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Data streaming has many applications in network monitoring, web services, e-commerce, stock trading, social

networks, and distributed sensing. This paper introduces a new problem of real-time burst detection in flow

spread, which differs from the traditional problem of burst detection in flow size. It is practically significant

with potential applications in cybersecurity, network engineering, and trend identification on the Internet.

It is a challenging problem because estimating flow spread requires us to remember all past data items and

detecting bursts in real time requires us to minimize spread estimation overhead, which was not the priority

in most prior work. This paper provides the first efficient, real-time solution for spread burst detection. It is

designed based on a new real-time super spreader identifier, which outperforms the state of the art in terms of

both accuracy and processing overhead. The super spreader identifier is in turn based on a new sketch design

for real-time spread estimation, which outperforms the best existing sketches.
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1 INTRODUCTION
Data streaming is the continuous production of data items which must be immediately processed

to support real-time queries based on up-to-the-moment information. It has wide applications in

network monitoring, web services, e-commerce, stock trading, social networks, and distributed

sensing. Its growing practical importance is evident from industrial pushes (such as Amazon Kinesis

Streams [1]) that enable customizable streaming applications.

For example, the stream of packets that are received by a router’s network interface at tens of

millions of packets per second can be modeled as a data stream, with each data item (i.e., packet)

carrying a flow ID f and a data element e of interest, where f and e are defined based on application

need. All items (packets) with the same flow ID form a flow. We may also treat the stream of user

queries that arrive at an Internet search engine, the stream of purchases at an e-commerce site, the
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stream of stock trades at an electronic exchange, or the stream of posts at a social network as a

data stream.

Much research interest in data streaming has been directed toward recording the data items

in compact and efficient data structures called sketches and extracting useful statistics from the

sketches [2, 4, 6, 7, 13, 18, 30, 31, 36, 37, 41–43, 46, 47]. They are very useful in dealing with an

extremely high data rate using limited resources, such as (1) monitoring a packet stream on the

data plane of a router at the network processor chip using SRAM and computation circuitry that

are also needed by key network functions such as packet forwarding, or (2) processing a data

stream of Internet searches, e-commerce purchases, stock trades, or social network posts by an

ordinary computer for cost and convenience reasons. Two basic statistics of common interest are

the number of items in each flow (called size) and the number of distinct items in each flow (called

spread). Sketches for flow spread are much more complex and expensive to operate than those for

flow size because they have to remember the past items and count only the new ones.

This paper investigates real-time spread burst detection in data streaming. We want to detect

burst increase, in which a flow’s spread suddenly jumps larger, burst decrease, in which a flow’s

spread suddenly drops significantly, and spread burst, which starts with a burst increase and follows

with a burst decrease. Detecting such patterns in real time has many important applications. We

give a few examples below.

• Cybersecurity: Consider the task of monitoring a packet stream with flow ID f being the

source address and data element e being the destination address/port in each packet. A burst

increase may suggest the onset of network scanning activity. Regularly-reoccurring spread

bursts may suggest scheduled scanning activities (such as some Internet worms, CodeRed

[22, 48] for instance). In another example, if we let f be the destination address and e being
the source address, a burst increase may suggest the onset of a denial-of-service attack.

Regularly-reoccurring spread bursts may suggest scheduled botnet activities.

• Network engineering: TCP’s congestion control can be gamed by creating a large number of

parallel connections. If we let f be the source address and e be the source port and destination
address/port, detection of burst increase and burst decrease provides additional information

for a router to intelligently drop packets against parallel connections during congestion.

In another example, if we let f be the URL in HTTP packets and e be the source address,
detection of bursts informs a web proxy to determine its caching priorities based on the

changing popularity of web content.

• Internet search: If we let f be the search keyword and e be the host address (or cookie) that
issues the search, a burst increase of a keyword indicates rising interest. If it follows with a

burst decrease, it suggests the interest is temporary.

• E-commerce: If we let f be the product ID and e be the customer that makes the purchase, a

burst increase (decrease) indicates the product is gaining (losing) popularity.

If we can detect bursts in real time, we can react to them in real time, by blocking out potentially

malicious sources, taking timely actions to improve network performance, or optimizing digital

ads based on the trends on Internet search or e-commerce.

Burst detection in data streaming has drawn research interest recently [23, 40, 45], but only for

bursts in flow size. This paper investigates burst detection in flow spread, which has never been

studied before. We use an example to illustrate the difference. Consider a packet stream with flow

ID f being the source address and data element e being the destination address/port. Suppose a

burst increase in flow size is defined as the number of packets sent by a source host jumps ten-fold

from one time unit to the next, whereas a burst increase in flow spread is defined as the number

of distinct destinations (that the source host contacts) jumps ten-fold from one time unit to the
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next. On the one hand, if a source host sends 1 packet in the first time unit and then 1 million

packets in the next unit, all to the same destination, then it has a burst increase in flow size, but

not in flow spread. On the other hand, if a source host sends 10 packets in the first time unit to the

same destination and then 10 packets in the next unit to different destinations, then it has a burst

increase in flow spread, but not in flow size.

The detection of spread bursts in real time is a technically challenging problem because it requires

us to estimate flow spreads at a high rate at the same time as we receive data items, whereas most

existing sketches for flow spread are optimized for recording (and compressing) data items in their

compact data structures [2, 4, 36, 37, 42, 47], but their spread estimation is much more expensive

and not suitable for real-time operations. This paper addresses the challenge with three major

contributions.

(1) We are the first to introduce the problem of detecting spread bursts and provide an efficient,

real-time solution that achieves good accuracy in detecting burst increase, burst decrease

and spread burst in our experiments using real network traffic traces.

(2) To support our work on spread burst detection, we design a new solution for real-time super

spreader identification, which outperforms the state of the art in terms of both accuracy and

processing overhead.

(3) An enabling component to our super spreader work is a new sketch design for per-flow

real-time spread estimation. It adopts a novel self-adaptive data structure to improve the

accuracy of spread estimation and lower the overhead in the meanwhile. It outperforms the

best existing sketches for flow spread.

The rest of the paper is organized as follows: Section 2 defines burst increase, burst decrease and

spread burst. Section 3 presents a self-adaptive sketch for spread estimation. Section 4 designs a

new sketch for real-time super spreader identification, on top of which Section 5 introduces our

solution for identifying spread bursts in real time. Section 6 presents our experimental evaluation

results. Finally, Section 7 draws the conclusion.

2 BURST INCREASE, BURST DECREASE AND SPREAD BURST
A data stream is a continuous sequence of data items that often arrive at a high rate, allowing

one to look at (or process) each item once before moving on to the next item without storing

the previous items. Each item is a pair of ⟨f , e⟩, where f is a flow ID and e is a data element. All

items carrying the same flow ID form a flow. The size of a flow is the number of items in the flow.

The spread of a flow is the number of distinct items in the flow, which is the focus of this paper.

We can use a counter to keep track of the size of a flow, but that is not adequate for the spread

because we need a data structure to remember the elements that have been seen so that we can

filter out duplicate items in the stream. Because the number of distinct elements in a large flow

can be in thousands or even millions, such a data structure has to be compact and efficient to

operate, but lossy due to compression of all the received items. Such a data structure is called sketch
[8–12, 15, 28, 29, 32, 34, 38, 39], which provides an estimate n̂f for the true spread nf of flow f .

Problem Definition: We divide a data stream into epochs based on time (e.g., every 5 minutes

being an epoch). Consider an arbitrary flow f . Let nf ,i be the spread of flow f in the ith epoch, i ≥ 0.

We define a burst increase of flow f as it meets the following condition: Given two consecutive

(i − 1)th and ith epochs, with i > 0,

nf ,i ≥ β ;

nf ,i−1 < αnf ,i
(1)
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where β is a threshold value and α is a fraction, which are both user-defined. For example, suppose

β = 100 and α = 0.1. If we observe that the spread of a flow f is 10 in the 2nd epoch and the spread

is 110 in the 3rd epoch, then there is a burst increase of flow f between these two epochs.

Similarly, we define a burst decrease of flow f as it meets the following condition: Given two

consecutive (i − 1)th and ith epochs, with i > 0,

nf ,i−1 ≥ β ;

αnf ,i−1 > nf ,i .
(2)

We define a spread burst of flow f as it meets the condition below: Given a sequence of consecutive

epochs from the (j − 1)th to the ith epochs, with j > 0 and 1 ≤ i − j < K ,

burst increase happens to flow f from the (j − 1)th epoch to the jth epoch;

nf ,k ≥ β, ∀k ∈ [j, i);

burst decrease happens to flow f from the (i − 1)th epoch to the ith epoch,

(3)

where K is a user-defined parameter. With this definition, the burst of high spreads is from the jth
epoch to the (i − 1)th epoch, with a length of (i − j) epochs. Note that the total length of the burst

(including the spread increase and spread decrease) is i − j + 2, which is in the range [1, K). For
example, suppose β = 100, α = 0.1 and K = 10. If we observe that the spread of a flow f is 10 in

the 2nd epoch, 110 in the 3rd epoch, 115 in the 4th epoch, and 9 in the 5th epoch, there is a spread

burst of flow f from the 2nd epoch to the 5th epoch, with a total length of 4. The burst of high

spreads is from the 3rd to the 4th epoch with length 2.

Recently, burst detection has gained interest in the research community [23, 40, 45]. However,

the prior work only considers bursts in terms of flow size (i.e., number of items in the flow), an

easier problem than the detection of burst increase and burst decrease in terms of flow spread

(i.e., number of distinct items in the flow), which has not been studied before, to the best of our

knowledge.

Real-time Challenge: We are interested in real-time detection, allowing real-time reaction to

the underlying issue such as an Internet worm outbreak or a denial-of-service attack. That requires

us to have an updated spread estimate n̂f each time after we process a data item ⟨f , e⟩.
Most existing sketches for flow spread are optimized for online recording of the items in their

compact data structures [2, 4, 36, 37, 42, 47], while providing spread estimate at the end of an epoch

offline. The online recording has to be done in real time at the arrival rate of the items, but spread

estimation can be done later. Hence, existing sketches often make the tradeoff in simplifying the

recording operation, while making spread estimation much more complex, which cannot be done

at a per-item level in real time.

Our challenge is to design a new spread sketch that minimizes the spread estimation overhead

for real-time operation, while not increasing the per-item recording overhead, in the meantime

increasing the accuracy of spread estimation. Moreover, we need a new design to identify the flows

whose spreads are beyond a threshold, also called super spreader identification, which is needed by

(1), (2) and (3). Again, the existing work either cannot identify such flows in real time [2, 4] or is

less accurate in doing so [24]. Our new design needs to identify super spreaders in real time as

data items are continuously processed and do so with an accuracy better than the state of the art.

When we use the estimated spread to check the conditions of (1), (2) and (3), it may result in false

positive (in which a burst is mistakenly reported) or false negative (in which a true burst is not

reported). Reducing false positive and false negative depends on the accuracy of real-time spread

estimation by our new designs.
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3 SELF-ADAPTIVE SKETCH
In order to support timely burst detection, we need an efficient solution to the problem of real-time

super spreader identification, which in turn requires an efficient and accurate solution for real-time

flow spread estimation. In this section, we introduce a new self-adaptive sketch design, which

significantly outperforms the state of the art in spread estimation for a single flow.

3.1 Existing Sketches for Single-flow Spread Estimation
To measure the spread of a single flow, most prior work was based on bitmaps [9, 10, 28, 29, 34],

FM (Flajolet-Martin) sketches [12], LogLog sketch [8] or HLL (HyperLogLog) sketches [11, 15, 25,

32, 38, 39]. Among them, HLL sketches perform the best, with the largest estimation ranges and

the best overall estimation accuracy.

The data structure of HLL [11] is an array A ofm registers, each of five bits. Consider a flow

f , which is recorded in A for spread estimation. For each arrival data item ⟨f , e⟩, we perform a

uniform hash h(e) ∈ [0,m − 1), which maps the item to a register A[h(e)]. We then calculate a

geometric hash G(e), which can be implemented by counting the number of leading zeros from

another uniform hash H ′(e) and then adding one, such that the probability of G(e) = i is 1

2
i , i ≥ 1.

To record the item, we let A[h(e)] := max{A[h(e)],G(e)}. To estimate the flow’s spread, denoted as

n̂f , we compute

n̂f = αm ·m2

(
m−1∑
i=0

2
−A[i]

)−1
where αm is a constant that can be calculated as αm =

0.7213
1+ 1.079

m
whenm ≥ 128. Refer to [11, 15] for

αm under other values ofm. With 5-bit registers, HLL can estimate flow spread up to many billions

(specifically αm ·mcdot231), with a relative standard error of
1.04√
m .

The state of the art in HLL sketches includes an improved estimation approach for small flows

in [15], denoted as HLL++, and a Markov-chain-based design in [25], referred to as Streamed

HLL. Other variants of HLL include (1) using geometric hashes whose probability of G(e) = i
being ai with a base a other than

1

2
[32], which achieves modestly better accuracy in spread

estimation than [15] in some range of flow spread, but is less accurate in other ranges, or (2) using

register distribution with the maximum likelihood method for spread estimation [38, 39], which

achieves modestly better accuracy than [15], but incurs heavy computation overhead, making it not

suitable for supporting real-time flow spread queries. Overall, the stream HLL [25] achieves the best

computational efficiency (especially in query overhead) and the best accuracy as well. It reduces

the average relative estimation error by 22.1% over HLL++ [15] in our experiments (Section 6.2),

using real Internet traffic traces.

Below we introduce a new self-adaptive sketch design, which further reduces the average relative

estimation error by 36.4% over the Streamed HLL.

3.2 Self-Adaptive Sketch (SAS)
The estimation accuracy of HLL sketches is controlled by the number of registersm. Given a fixed

amount of memory, there is a tradeoff between the number of registers (estimation accuracy) and

the size of the registers (estimation range). To measure a flow of large spread, we should keep 5

bits per register for a large range. To measure a flow of medium or small spread, we do not need 5

bits for each register (where the higher-order bits would be mostly unused anyway); we may use

2 bits per register such that we have more registers for better accuracy. The problem is that we

do not know whether the flow’s spread will be large or small beforehand; that is what we want

to measure. Our idea of a self-adaptive sketch design, referred to as SAS, is to begin with 2-bit
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A[0].b A[1].b A[2].b

A[0].r[0]

A[0].r[1]
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A[2].r[0]

A[2].r[1]

0 0 10 0
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A[2]

B=1

A[0] A[1] A[3]

A[3].r4

0 1 10 0 1 1 10 0 0 0 10 0 1 0 10 0

m=4

Fig. 1. Illustration of Self-Adaptive Sketch (SAS) with m = 4, i.e., four units of five bits each for A. The
interpretation of the units in A depends on the value of the sketchwide indicator B and the local indicator of
each unit (its first bit). When B = 0, each 5-bit unit will be interpreted either as two 2-bit registers or as one
4-bit register. For unit A[0], because its local indicator A[0].b is 0, the remaining four bits are interpreted as
two registers, A[0].r [0] = 012 and A[0].r [1] = 102. For unit A[1], because A[1].b = 1, the remaining four bits
are interpreted as a single 4-bit register, A[1].r4 = 01102. Notice that the last four bits in both A[0] and A[1]
are 01102, but they are interpreted differently, depending on the local indicator. When B = 1, each 5-bit unit
will be interpreted as a single 5-bit register. For example, A[0] = 001102 and A[1] = 101102.

registers and merge 2 registers into a 4-bit register if one of them overflows. If any 4-bit register

overflows (which indicates a large-spread flow), we convert all registers to five bits. We inherit

five-bit registers from HLL, which measures flow spreads in the order of O(231). If one would use

six-bit registers, it could measure flow spreads in the order ofO(263), but that would be unnecessary
for most practical applications.

Data Structure: SAS consists of (1) an array A of m five-bit units, denoted as A[i], 0 ≤ i < m,

which are all initialized to zeros, (2) a one-bit sketchwide indicator B, initialized to zero, and (3) a

probability variable P , initialized to one. Let N be a spread estimate of a single flow, initialized to

zero.

When B = 0, each unit A[i] contains either two 2-bit registers or one 4-bit register, depending
on the value of the register’s local indicator (which will be introduced shortly). But after B is set to

one, all units A[i] will be interpreted as five-bit registers.

We focus on explaining the case of B = 0. Let’s first define some notations. Consider an arbitrary

unit A[i], 0 ≤ i < m. Its first bit is a local indicator, denoted as A[i].b, which is initially zero. Its

second and third bits are denoted as A[i].r [0], which can be used as a 2-bit register. Similarly, its

fourth and fifth bits are denoted as A[i].r [1], another 2-bit register. We may also combine A[i].r [0]
and A[i].r [1] into a four-bit register, denoted as A[i].r4. We interpret unit A[i] as follows: When

A[i].b = 0, we interpret the other four bits in A[i] as two registers, A[i].r [0] and A[i].r [1]; when
A[i].b = 1, we interpret the other four bits in A[i] as one register A[i].r4. Refer to Fig. 1 for an

illustration.

Data Item Recording: For any arrival data item ⟨f , e⟩, we record the item in SAS by Algorithm 4

in Appendix A. We hash the item to unit A[h(f , e)]. If B = 1, this is a five-bit register where the
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item will be recorded. If B = 0 and A[h(f , e)].b = 1, the item will be recorded by the four-bit

register A[h(f , e)].r4 instead. If B = 0 and A[h(f , e)].b = 0, we need another hash h′(f , e) ∈ {0, 1}
to further map the item to A[h(f , e)].r [h′(f , e)], which is a two-bit register. In all the above cases,

we compute a geometric hashG(f , e), and the mapped register will be updated to G(f , e) only if

G(f , e) is larger than the current register value. Hence, this update is probabilistic. We maintain a

variable P , which at all time equals the probability for a new arrival item to cause an update to A,
which will be formally stated in a theorem and proved in Appendix B. P is the sum of the update

probabilities over all registers. Let p(a) be the probability that a register a ∈ A is updated, where

the array A can be interpreted as a set of registers. P =
∑

a∈A p(a), where p(a) is the product of
the probability for a new item ⟨f , e⟩ to be hashed to a and the probability of G(f , e) > a, which
causes update. Initially, because all registers are zeros and G(f , e) ≥ 1, we must have P = 1. With

an update of a register a to value G(f , e), we need to update P because p(a) changes. The expected
number of new items to cause an update is

1

P . So when an update event happens, we increase the

spread estimate N by
1

P .

We now explain the details on how to update the register and the value of P . We must handle

register overflow. First, consider the cases when B = 0.

(1) If A[h(f , e)].b = 0, G(f , e) > A[h(f , e)].r [h′(f , e)] and G(f , e) ≤ 3, then we need to update

the 2-bit register A[h(f , e)].r [h′(f , e)] to G(f , e), where A[h(f , e)].r [h′(f , e)] is the register
that the data item ⟨f , e⟩ is mapped to. It will not cause overflow because G(f , e) ≤ 3. We

also need to update P because p(A[h(f , e)].r [h′(f , e)]) changes. The probability of hashing

to unit A[h(f , e)] is 1

m . There are two 2-bit registers in it. So the probability of hashing

to A[h(f , e)].r [h′(f , e)] is 1

2m . The probability for a geometric hash G(f , e) to be greater

than A[h(f , e)].r [h′(f , e)] is 2
−A[h(f ,e)].r [h′(f ,e)]

. Hence p(A[h(f , e)].r [h′(f , e)]) is equal to

2
−A[h(f ,e )].r [h′(f ,e )]

2m before register update. With the update of A[h(f , e)].r [h′(f , e)] to 2
−G(f ,e)

,

this probability becomes 2
−G(f ,e)

for future data items.

P := P −
2
−A[h(f ,e)].r [h′(f ,e)]

2m
+
2
−G(f ,e)

2m
;

A[h(f , e)].r [h′(f , e)] := G(f , e),
(4)

where “:=" is the assignment operator.

(2) If A[h(f , e)].b = 0, G(f , e) > A[h(f , e)].r [h′(f , e)] and 3 < G(f , e) ≤ 15, then there will be

overflow if we set the 2-bit registerA[h(f , e)].r [h′(f , e)] toG(f , e). We need to combine two 2-

bit registers to one 4-bit registerA[h(f , e)].r4 by setting the local indicatorA[h(f , e)].b. Recall
that P is the sum of the update probabilities over all registers. Because we combine two regis-

ters into one, wemust subtract the update probabilities of the two registers,A[h(f , e)].r [0] and
A[h(f , e)].r [1], from P and then add the update probability of the new register A[h(f , e)].r4,
whose value isG(f , e). Note that the probability of hashing toA[h(f , e)].r [0] orA[h(f , e)].r [1]
is

1

2m , and the probability of hashing to A[h(f , e)].r4 to 1

m

P := P −
2
−A[h(f ,e)].r [0] + 2−A[h(f ,e)].r [1]

2m
+
2
−G(f ,e)

m
;

A[h(f , e)].r4 := G(f , e);

A[h(f , e)].b := 1.

(5)

(3) If A[h(f , e)].b = 1,G(f , e) > A[h(f , e)].r4 andG(f , e) ≤ 15, then we need to update the 4-bit

register A[h(f , e)].r4 to G(f , e). Note that with A[h(f , e)].b = 1, A[h(f , e)] is interpreted as

having a 4-bit register A[h(f , e)].r4. The probability of hashing to A[h(f , e)] is 1

m , and the
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Initialization

0 0 10 0

A[0].b A[1].b A[2].b

A[0].r[0]

A[0].r[1]

0 0 00 1

A[1].r[0]

A[1].r[1]

1 1 00 0

A[3].b

A[2].r4

0 0 00 0

A[3].r[0]

A[3].r[1]

0 0 10 0 0 0 00 1 0 1 00 0

A[2]

1 0 00 1
B=1

P=0.20
N=6.36

A[0] A[1] A[3]

B=0

P=0.80
N=2.10

B=0

P=0.73
N=3.36

B=0

P=0.61
N=4.72

<f,e1> <f,e2>

<f,e3> <f,e4>

<f,e5>

Fig. 2. Illustration on how the registers in SAS evolve as data items are recorded. There are four rows of
register arrays in the figure. Initialization is shown in the first row, where A has four units of 5 bits each,
with B = 0, N = 0 and P = 1.When ⟨f , e1⟩ arrives, suppose that it is hashed to A[0].r [1] and G(f , e1) = 2,
thus A[0].r [1] = 2 = 102, N = 1.00, and P = 0.91, according to our algorithm, as shown in the second row.
When ⟨f , e2⟩ arrives, suppose that it is hashed to A[2].r [0] and G(f , e2) = 3, thus A[2].r [0] = 3 = 112, N is
increased by 1

P to 2.10, and then P is changed to 0.80, also shown in the second row.When ⟨f , e3⟩ arrives,
suppose that it is hashed to A[1].r [1] and G(f , e3) = 1, thus A[1].r [1] = 1 = 012 = 1, N = 3.36, and P = 0.73,
as shown in the third row.When ⟨f , e4⟩ arrives, suppose that it is hashed into A[2].r [0] and G(f , e4) = 4,
which is larger than the current value of A[2].r [0]. Because A[2].r [0] cannot store G(f , e4) without overflow,
we combineA[2].r [0] andA[2].r [1] intoA[2].r4 by settingA[2].b = 1 andA[2].r4 = 4 = 01002. Then, N = 4.72

and P = 0.61. Finally, when ⟨f , e5⟩ arrives, suppose that it is hashed to A[3].r [0] and G(f , e5) = 17, which
will overflow A[3].r [0]. We need a 5-bit register to store G(f , e5). We turn all units to 5-bit registers and let
B = 1. We set A[3].r [0] = 17 = 100012, N = 6.36 and P = 0.20, as shown in the last row.

probability for this register to be updated by a new item changes from 2
−A[h(f ,e)]

to 2
−G(f ,e)

as the register value is changed.

P := P −
2
−A[h(f ,e)].r4

m
+
2
−G(f ,e)

m
;

A[h(f , e)].r4 := G(f , e).
(6)
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(4) If G(f , e) > 15, there will be overflow because with B = 0, all registers are 2-bit or 4-bit

long and none can hold G(f , e). We set B = 1 and combine the registers in each unit A[i],
0 ≤ i < m, to a single 5-bit register by taking the maximum value of the registers in the unit.

Since the values of many registers may have changed, we recompute P by summing the new

update probabilities over all 5-bit registers:

P :=

m∑
i=0

2
−A[i]

m
. (7)

We then update the value ofA[h(f , e)] toG(f , e) unlessG(f , e) > 31, inwhich caseA[h(f , e)] =
31. With this update, we need to change the value of P accordingly.

P :=

{
P − 2

−A[h(f ,e )]

m + 2
−G (f ,e )

m , if G(f , e) < 31;

P − 2
−A[h(f ,e )]

m , if G(f , e) ≥ 31.
(8)

The correctness of the formulas for updating P is stated in Theorem 1, which is proven in

Appendix B.

Next, consider the case when B = 1. IfG(f , e) > A[h(f , e)] and A[h(f , e)] < 31, then we update the

value of P the same way as in (8) and let A[h(f , e)] := min{G(f , e), 31}.

Theorem 1. At any time the value of P in SAS is equal to the probability for the next arrival data
item to update the value of a register.

The proof of the above theorem can be found in Appendix B. Figure 2 gives an example of how

data items are recorded by SAS.

Estimation Accuracy: The standard error of spread estimate by HLL [11] is
βm
√
m + δ2(n), where n

is the real flow spread,m is the number of registers, |δ2(n)| < 5 · 10−4 form ≥ 16 as n → ∞, and βm
is a function ofm: β16 = 1.106, β32 = 1.070, β64 = 1.054, β128 = 1.046, β∞ =

√
3 log(2) − 1 = 1.03896.

The standard error decreases whenm increases.

This result applies to SAS, with its standard error being
βm′
√
m′
+δ2(n), wherem

′
is the total number

of variable-sized registers in A. In the worst case, SAS becomes HLL when B = 1, i.e., all registers

are converted to five bits long and thusm′ =m. But its performance is better than HLL when B = 0

andm′ > m.

Spread Estimation: The variable N provides an up-to-date estimate of the flow’s spread at any

time. There is essentially no query overhead.

4 REAL-TIME SUPER SPREADER IDENTIFICATION
We now consider a data stream of numerous flows. We divide the time into epochs. To support

timely burst detection (in the next section), we design a real-time super spreader identifier that

processes the data stream in each epoch and implements the following two functions:

(1) real-time super spreader identification. It identifies in real time the flows whose spreads are

greater than a user-specified threshold in an epoch, and returns the IDs and the estimated

spreads of those flows.

(2) per-flow spread estimation. It can provide an estimate for the spread of any given flow at any

time.

4.1 Existing Work on Super Spreader Identification
The prior work on super spreader identification can be broadly categorized as either sampling-based

[2, 5, 17, 27, 44] or sketch-based [7, 19, 20, 24, 33].
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The sampling-based solutions [5, 17, 27, 44] monitor only a portion of the flows by sampling.

They only consider the data items whose hash values are smaller than a pre-specified threshold,

which controls the sampling probability. They store the flow IDs of the sampled items and estimate

the spread of each flow based on its sampled items. They can then identify the super spreaders from

the sampled flows. Note that the super spreaders are more likely to be sampled while most small

flows will be filtered out. The best sampling-based solution is a recently published work called

AROMA [2, 4]. AROMA does not support real-time identification of super spreaders. That would

require spread estimation at a per-item basis, which AROMA does not support, because of high

overhead. None of the sampling-based solutions support per-flow spread estimation. Nonetheless,

we will compare with AROMA on the accuracy of super-spreader identification.

The sketch-based solutions summarize the information of all items in sketches. Most of them

[7, 19, 20, 33] are designed to recover the super spreaders offline. They usually suffer from high

overhead of recovering super spreaders. Themost recent work, called SpreadSketch [24], stresses the

importance of fast detection. It outperforms the prior sketch-based solutions in terms of detection

accuracy and detection overhead. Yet its processing overhead is still significant as our experiments

will demonstrate. Moreover, its accuracy in super spreader identification is much worse than

AROMA [2, 4].

4.2 New Design for Real-time Super spreader Identification
We introduce a new design for Real-time Super spreader Identifier, referred to as RSI, which

adopts SAS as a building block for its efficiency and accuracy in spread estimation. It detects super

spreaders in real time and provides a spread estimation for any flow at any time. Our experimental

results show that its processing overhead is much smaller than SpreadSketch [24], while its overall

accuracy is better than AROMA [2, 4], under the same memory usage.

Data Structure: The data structure of RSI consists of (1) a hash table T that stores a subset of

selected flows, with each table entry having a flow ID field and an estimated spread field — we

will report a flow as a candidate super spreader if its estimated spread reaches a user-specified

threshold t ; (2) an array C of n SAS sketches, each of which operates independently — we do not

use each SAS sketch for a single flow, but use all SAS sketches together for spread estimation of

numerous flows in the data stream; and (3) a variant of conservative counter update sketch (CU)

[14], denoted as U , which enables per-flow spread estimation. The value of n is determined based

on the amount of memory allocated for RSI.

Notations: The ith SAS sketch in C is denoted as C[i], for 0 ≤ i < n. Its array of 5-bit units is

denoted asC[i].A, its indicator is denoted asC[i].B, and its probability variable is denoted asC[i].P .
We do not need the variable N for spread estimation, which is now the job of U . The jth 5-bit

unit in C[i].A is denoted as C[i].A[j], 0 ≤ j < m. If C[i].B = 0 and C[i].A[j].b = 0, we interpret the

remaining four bits of the unit as two registers, C[i].A[j].r [0] and C[i].A[j].r [1], each having two

bits. If C[i].B = 0 and C[i].A[j].b = 1, we interpret the remaining four bits of the unit as a single

4-bit register, C[i].A[j].r4. If C[i].B = 1, any unit C[i].A[j] is considered as a 5-bit register. The

CU sketch, i.e., U , is a two-dimensional counter array with d rows andw columns. Each counter

has ⌈log(t + 1)⌉ bits. The jth counter of the ith row in U is denoted as U [i][j], where 0 ≤ i < d ,
0 ≤ j < w . The value of d is typically set to three or four. The value ofw is determined based on

the amount of memory allocated.

Flow-SAS Mapping:We consider the case that the number of flows in a large data stream is far

greater than the number n of SAS sketches inC , so we cannot allocate one SAS sketch per flow. The

flows have to share the SAS sketches. To prevent a very large flow from turning all SAS sketches
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Algorithm 1: Record a data stream in RSI

Input: ⟨f , e⟩, C ,U
1 r = h′′(f , e)

2 p = C[Hr (f )].P

3 Record ⟨f , e⟩ in C[Hr (f )] with return value b

4 if b = true then
5 v := min{U [i][H ′

i (f )] | 0 ≤ i < d}

6 for i ∈ [0,d) do
7 if U [i][H ′

i (f )] < v +
1

p then
8 U [i][H ′

i (f )] := v +
1

p

array of SASC C[0] C[1] . . . C[i] . . . C[n-2] C[n-1]

Arrived item <f,e>

Recording

U d arrays of counters

flow hash tableT

Increase by 1
p

If spread ≥ t, insert f

...

. . . . . .

. . . . . .
f

spread

Fig. 3. Illustration on the operations of RSI for super spreader identification. Each arrival item ⟨f , e⟩ is
recorded by one SAS selected from C . If it causes a register update, we increase the estimated spread of flow
f in U . If the estimated spread reaches the threshold, we will insert flow f and its estimated spread in T . For
all subsequent items of flow f , after they are recorded and if they cause register updates in C , we need to
update the flow’s entry in T for its increased spread estimate.

into 5-bit registers, we pseudo-randomly map each flow to k SAS sketches through hashing, where

k ≪ n, and record its data items only in these k sketches, so that any large flow will not severely

impact any small flow, unless their k sketches completely overlap.

More specifically, each flow f is mapped to C[Hi (f )], 0 ≤ i < k , where Hi (.) is a hash function

whose range is [0,n).

Flow-CU Mapping: Based on the standard operation of CU [14], each flow f is mapped to d
counters,U [i][H ′

i (f )], 0 ≤ i < d , where H ′
i (.) is a hash function whose range is [0,w).

Data Item Recording: For any arrival data item ⟨f , e⟩, we record the item in a selected SAS sketch

inC by Algorithm 1. First, we use a hash value, r = h′′(f , e) ∈ [0,k − 1], to select an SAS,C[Hr (f )].
Then we record the item in C[Hr (f )] by Algorithm 4, which can be found in Appendix A. By

Theorem 1, the probability for the item to cause a register update is p = C[Hr (f )].P . Hence, we
should increase flow f ’s spread estimate by

1

p . This is done by increasing some of the d counters in
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U that f is mapped to as follows: Let v be the smallest value of the d counters. For the counters

that are smaller than v + 1

p , we increase them to v + 1

p . For the counters that are equal to or greater

than v + 1

p , we keep them unchanged.

For each arrival data item, besides the overhead of recording it in a SAS sketch (which has been

discussed in Section 3.2) the additional overhead includes one hash h′′(f , e) to select the SAS sketch
and d hashes for updating U . Because d is typically three or four, we may take bits from one hash

computation H ∗(f ), log
2
w bits at a time to replace H ′

i (f ), 0 ≤ i < d , if the number of output bits

in H ∗(f ) is at least d log
2
w . That reduces d hashes to one hash for updatingU .

Spread Estimation: Because flows share counters inU , as they increase their counters in recording,

they introduce inter-flow noise to other flows that share the same counters. To query for the spread

of any flow f , we return the minimum value of the d counters, U [i][H ′
i (f )], 0 ≤ i < d , which

carries the smallest noise.

Real-time Super Spreader Identification: For each arrival data item ⟨f , e⟩, after recording it

in C and increasing the d counters, we have the real-time estimate of the flow’s spread by taking

the minimum of the d counters. If it reaches the threshold t , we insert f into the hash table T as a

super spreader if it is not already there, and we set its estimated spread. If f is already in T , we
increase its spread estimate in the table by

1

p . Figure 3 illustrates the operations of RSI for super

spreader identification.

5 REAL-TIME BURST DETECTION (RBD)
By the definitions in Section 2, we may detect a burst increase in real time; as the arrival of a data

item in flow f pushes the spread estimate higher to meet the condition of burst increase in (1),

we are able to detect it right away if we have the updated spread estimate. However, we can only

detect a burst decrease at the end of an epoch because the condition of burst decrease in (2) holds

at the beginning of each epoch but may be violated at any time as the flow’s spread increases. Only

if (2) holds at the end of the epoch, we can be sure that we have a burst decrease. Because a spread

burst consists of a burst increase and then a burst decrease, it is also true that we can only detect a

spread burst at the end of the epoch.

Consider a device processing a continuous high-rate data streaming, such as the network pro-

cessor chip in a router processing an incoming packet stream at tens of millions of packets per

second. Suppose that real-time spread burst detection, denoted as RBD, is one of the tasks by a

measurement module implemented in cache memory (such as SRAM) for high speed. Suppose that

RBD starts from the 0th epoch and processes the data stream, epoch by epoch, to detect all burst

increases, burst decreases, and spread bursts.

Data Structure:At the ith epoch, i > 0, the data structure of RBD consists of (1) RSI’s data structure

for recording the data items in the current epoch, denoted asCi ,Ui , andTi , with the threshold t = β ,
(2) RSI’s data structure from the previous (i − 1)th epoch, denoted as Ui−1, and Ti−1, and (3) a hash

table F storing the flows that had a burst increase less than K epochs ago and kept their spreads

above the threshold in each epoch since. These flows are candidates for spread burst detection.

At the end of the ith epoch, we will send the content ofCi ,Ui ,Ti and F to an offline server, which

keeps all measurement results for long-term storage. We deleteCi−1,Ui−1, andTi−1 locally, keepCi ,

Ui and Ti for one more epoch, always keep F , and create Ci+1, Ui+1 and Ti+1 to start the (i + 1)th
epoch.

Per-item Operation and Real-time Detection of Burst Increase: For any arrival data item

⟨f , e⟩, we record it by Algorithm 1 in Ci , Ui and Ti . After recording, if the flow f is in Ti and its
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Algorithm 2: Real-time detection of burst increase by RBD

Input: ⟨f , e⟩, Ci ,Ui , Ti ,Ui−1, Ti−1, F
1 Record ⟨f , e⟩ in Ci ,Ui and Ti by Algorithm 1

2 if f ∈ Ti and n̂f ,i is increased then
3 Look up in Ti−1 andUi−1 for n̂f ,i−1
4 if n̂f ,i−1 < αn̂f ,i then
5 Report a burst increase of flow f

6 Insert f and i into F

Algorithm 3: Detection of burst decrease and spread burst by RBD

Input: ⟨f , e⟩, Ci ,Ui , Ti ,Ui−1, Ti−1, F
1 for each flow f ∈ Ti−1 do
2 Look up in Ti andUi for n̂f ,i
3 if αn̂f ,i−1 > n̂f ,i then
4 Report a burst decrease of flow f

5 if f ∈ F then
6 Report a spread burst of flow f

7 for each flow f ∈ F do
8 Look up in Ti andUi for n̂f ,i
9 Flow f was inserted to F during the jth epoch

10 if n̂f ,i < β or i − j = K then
11 Remove f from F

estimated spread in the current epoch, denoted as n̂f ,i , is just updated, since n̂f ,i must be greater

than the threshold β , we need to check the condition for burst increase. To do so, we look up in

Ti−1 for the estimated spread of flow f in the previous epoch, denoted as n̂f ,i−1. If f is not in Ti−1,
we compute n̂f ,i−1 fromUi−1; see Section 4.2. If n̂f ,i−1 < αn̂f ,i , we report a burst increase for flow
f , and if f is not already in F , we insert flow f , together with i , into F . The pseudo code can be

found in Algorithm 2.

Detection of Burst Decrease and Spread Burst: At the end of the ith epoch, for each flow f
in Ti−1, we know that its estimated spread n̂f ,i−1 in the (i − 1)th epoch must be greater than the

threshold β . We want to check the condition for burst decrease. To do so, we look up in Ti for
the flow’s estimated spread in the ith epoch, n̂f ,i . If f is not in Ti , we compute n̂f ,i from Ui . If

αn̂f ,i−1 > n̂f ,i , we report a burst decrease for flow f . If f is in F , then we report a spread burst.

For each flow f in F , if n̂f ,i < β , we remove it from F . Suppose flow f was inserted into F in

the jth epoch, if i − j = K , we also remove f from F . Refer to Algorithm 3 for the end-of-epoch

operations.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
We use four datasets for our experiments: (1) a synthetic dataset used for the evaluation of SAS,

(2) 12 hours of packet stream, extracted from one of the backbone infrastructure routers on our
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campus, which contains 23,595,264 packets, (3) five CAIDA traces [26], which cumulatively contain

8,194,919,166 packets, and (4) an E-commerce dataset [16], where each item is a product review

record and there are 109,950,747 items in total. For all network datasets, each packet is modeled

as a data item ⟨f , e⟩. In the second dataset above, we identify 237304 flows in the packet stream.

From each packet’s headers, we extract the source IP address as the flow ID f , and the combination

of source port, destination IP and destination port as the element ID e . That helps a router to

catch parallel TCP connections during congestion by measuring flow spread, identifying super

spreaders, detecting burst increase and spread burst, as is explained in the introduction. We divide

the 12 hours of packet stream into 144 epochs of 5 minutes each. As an example, the first epoch

contains 173851 packets, among which 107708 are distinct. In the third dataset, we use the source

address as the flow ID and the destination address as the element ID e . The five traces, gathered
by five different routers in different years, each contain one hour of Internet traffic. Each of the

five one-hour CAIDA traces is divided into 60 one-minute epochs. For the E-commerce dataset, we

extract the product name as the flow ID, and the user name in each review as the element ID e .
Detecting burst increase, burst decrease, and spread burst can help track the popularity change

of products over time. The dataset contains a total of 206859 flows. It spans 61 days in the whole

October and November of 2019. We divide the dataset into 61 epochs, each lasting for 24 hours.

The performance metric for evaluating SAS (Self-Adaptive Sketch) is the standard error [35],

which is defined as

√∑
f ∈Ω(

nf −n̂f
nf

)2/(|Ω | − 1), where nf is the true spread of flow f , n̂f is the

estimate, and Ω is the set of all flows in a stream.

The performance metrics for evaluating RSI (Real-time Super spreader Identifier) include (1)

number of true positives (TP), which are the reported flows that are truly super spreaders, (2)

number of false positives (FP), which are the reported flows that are not super spreaders, (3) number

of false negatives (FN), which are true super spreaders not reported, (4) F1-score given by the

formula F1 = T P
T P+ 1

2
(F P+FN )

, which combines the impact of FP and FN with respect to TP, and (5)

average time for processing a data item (such as packet). Note that a higher F1-score indicates a

better performance, with F1 = 1 for the case of no FP and no FN.

The performance metrics for evaluating RBD (Real-time Burst Detection) include (1) number of

true positives (TP), (2) number of false positives (FP), (3) number of false negatives (FN), and (4)

F1-score.

In the next three subsections, we will evaluate SAS, RSI and RBD, respectively. For SAS, we

evaluate its estimation accuracywith respect to the state-of-the-art sketches for spreadmeasurement

and we keep the memory a constant of 640 bits for all sketches and the register size (unit size in our

case) to 5 bits for all sketches. For RSI, we evaluate its performance on super spreader identification

with respect to the state-of-the-art solutions. It inherits the aforementioned parameters of SAS. Let

M be the total memory andM(U ) be the memory allocated for its arrayU . In the experiments for RSI,

we setM to 2Mb, and vary the memory distributionM(U )/M and the number of hash functions d .
We will use the parameter configuration that performs best in the subsequent evaluation, including

the experiments for RBD.

6.2 Evaluation of SAS for Spread Estimation
We compare SAS with the state of the art, Streamed HLL [25], as well as the original HLL [11] and

its improvement HLL++ [15] on their estimation accuracy. As recommended by [15], the memory

is set to 640 bits for each sketch. That is, HLL++ has 128 5-bit HLL registers; Streamed HLL has

115 5-bit registers, two floats for storing the estimate and the probability respectively; SAS has 115

5-bit units, a 1-bit indicator, two floats for storing the estimate and P respectively.
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Fig. 4. Standard error comparison among SAS, Streamed HLL, HLL++ and HLL.

We first use artificially generated flows with spreads ranging from 1 to 1000 (which covers most

flows in our packet stream to be used next). For each spread value, we generate 5000 flows of

that spread and run the four sketches in turn to provide a spread estimate before computing the

standard error. Fig. 4 presents the standard error comparison. Due to the self-adjusting design, SAS

outperforms HLL++ and Streamed HLL significantly. For example, SAS reduces the standard error

by 41.6% and 26.1%, compared to HLL++ and Streamed HLL, respectively, when the flow spread is

100. This accuracy improvement is important for the performance of RSI and RBD that are built on

top of it.

Next, we use our campus packet stream to evaluate. For each flow in each epoch, we run the

three sketches to each produce a spread estimate and calculate the standard error. The standard

error of all flows in all epochs (or flows with spread greater than or equal to 20) is presented in

Table 1. SAS reduces the standard error by 22.4% compared to Streamed HLL, which in turn reduces

the standard error by 16.2% over HLL++. From Fig. 4, we see that larger flows (with spreads no

smaller than 20) have larger standard errors. If we only consider these flows, the error reduction by

SAS over Streamed HLL is 20.4%, and the reduction by Streamed HLL over HLL++ is 16.2%.

Table 1. Standard errors for SAS, Streamed HLL and HLL++, using the campus packet stream. SAS reduces
standard error of all flows by 22.4% over Streamed HLL.

All flows Flows with spread ≥ 20

SAS 0.00194 0.0301

Streamed HLL 0.00250 0.0378

HLL++ 0.00298 0.0451

6.3 Evaluation of RSI for Super Spreader Identification
The experimental configuration is described as follows: We use the campus packet stream. In each

epoch, the flows whose spreads are 100 or greater are super spreaders. Each counter inU is 7 bits

long, and we set t to 90. The value of t controls the tradeoff between FP and FN; a smaller threshold

t will increase FP but reduce FN (which is often more important). LetM be the total memory and

M(U ) be the memory allocated forU . Hence, the memory allocated forC is aboutM −M(U ) as the

hash table T for super spreaders is typically small. We use the ratioM(U )/M to characterize the

memory distribution in RSI. When we increase an integer inU by a real number 1/p, our actual

implementation is to increase the counter by ⌈1/p⌉ with a probability of
1/p
⌈1/p ⌉ .

We first evaluate the impact of d (number of counter arrays inU ) and memory distribution on

the performance of RSI. Table 2 presents the average number of FPs, the average number of FN, and

the F1-scores with respect to d , underM(U )/M = 0.5 andM = 2Mb. The total number of true super

spreaders across all epochs is 23962, as shown in the second column under Ground Truth. Super
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Table 2. Accuracy of RSI in FP, FN and F1-score with respect to d .
d Ground Truth Reported FP FN F1-score

1 23962 29184 5403 181 0.895

2 23962 26513 2689 138 0.944

3 23962 26428 2638 172 0.944

4 23962 26441 2633 154 0.945

5 23962 26469 2661 154 0.944

6 23962 26412 2627 177 0.944

7 23962 26481 2689 170 0.943

Table 3. Accuracy of RSI in FP, FN and F1-score with respect toM(U )/M .
M(U )/M Ground Truth Reported FP FN F1-score

0.4 23962 26426 2645 181 0.944

0.5 23962 26441 2633 154 0.945

0.6 23962 26517 2696 141 0.944

0.7 23962 26411 2634 185 0.944

spreaders are counted independently in each epoch. If a flow’s spread is 100 or greater in multiple

epochs, we try to detect it in all those epochs. The third through sixth columns present the number

of reported super spreaders, the number of false positives, the number of false negatives, and the

F1-score, respectively.

As we increase d from the minimum value 1, there are two opposing factors that affect the

accuracy of spread estimation byU , which in turn affects the accuracy of super spreader detection.

On the one hand, with a large value of d , the min operation inherited from CU [14] helps reduce

the error in spread estimation; on the other hand, as data items are recorded for up to d times, it

increases the inter-flow noise inU and thus increases the error in spread estimation. With these

two opposing factors, as we can see in Table 2, the F1-score increases first, peaks at d = 4, and

decreases after that. Hence, we will set d = 4 in the remaining experiments, which agrees with the

choice of d in existing papers that adopt CU [3, 21, 46].

Table 3 presents FP, FN and F1-score by varyingM(U )/M from 0.4 to 0.7, with d = 4 andM =

2Mb. The best F1-score is achieved whenM(U )/M = 0.5, which means that the memory is about

evenly distributed between C andU .

Next, we compare RSI with the state of the art on super spreader identification, i.e., AROMA [2]

and SpreadSketch [24], in terms of accuracy in super spreader identification. For RSI, we set d = 4

and M(U )/M = 0.5. The memory M allocated to each sketch is 2Mb. The parameter settings of

AROMA and SpreadSketch follow those in the original papers. We use all the epochs of our packet

stream. Table 4 shows experimental results in FP, FN, and F1-score. RSI has the smallest number of

false positives, much fewer than AROMA, which is in turn much better than SpreadSketch. The

table also shows that all three sketches have very few false negatives, comparing with the number

of true super spreaders in the second column. For example, RSI’s FN only accounts for 0.6% of super

spreaders. The reason that SpreadSketch has no false negatives but many false positives is because

it usually overestimates flow spread. In terms of the performance in F1-score results, RSI is the best,

maintaining a F1-score of 0.945. In comparison, AROMA’s F1-score is 0.889 and SpreadSketch’s

F1-score is only 0.670.

Finally, we compare the sketches in terms of per-packet processing overhead. AROMA is not

evaluated because it does not support real-time super spreader identification due to its high overhead

on spread estimation. RSI needs 212 ns to process a packet on average while SpreadSketch needs

4889 ns, which is 22 times larger.
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Table 4. Performance of RSI, AROMA and SpreadSketch in super spreader identification.

Epoch Ground Truth Reported FP FN F1-score

AROMA 23962 28742 5300 520 0.889

RSI 23962 26441 2633 154 0.945

SpreadSketch 23962 47620 23658 0 0.670

6.4 Evaluation of RBD for Burst Detection
Since this paper is the first that studies the spread burst detection, there is no prior work that we

can compare with. We focus more on evaluating the performance of RBD under different parameter

values.

We first study the performance of RBD under different memory allocations, using the campus

dataset. We use the entire 144 epochs of the packet stream. If not specified otherwise, the default

parameter settings are d = 4,M(U )/M = 0.5, β = 100, α = 0.1,M =2Mb, and K = 10. The left half

of Table 5 presents the F1-scores for burst increase, burst decrease, and spread burst detection,

under the campus dataset, where the first column varies the memory allocation from 100Kb to

10000Kb (i.e., 10Mb). The experimental results show that the performance generally improves as

the memory increases; small deviation is the result of statistical variance in execution. When the

memory is increased from 100Kb to 500Kb, the performance improvement is significant, with the

F1-score for burst increase increasing from 0.753 to 0.944, but the gain becomes negligible when

the memory is increased further. This is because when C andU are small, there will be many hash

collisions as we map flows to them, causing inter-flow noise. As we increase memory, collisions

(thus noise) are reduced. Once collisions are already kept at a low level, further increasing memory

does not offer much help.

The detailed experimental results on TP, FP, and FN for burst increase, burst decrease and spread

burst detection are provided in Tables 13-15 in Appendix C. They cannot be included in the main

text due to space limitation.

Table 5. F1-score of RBD for burst increase, burst decrease, and spread burst detection, w.r.t. memory allocation
(Kb), under β = 100, α = 0.1, and K = 10, using the campus dataset and the CAIDA-1 dataset, respectively.
CAIDA-1 begins from a higher memory of 500Kb because it contains much more items than the campus
dataset.

Campus dataset CAIDA-1 dataset

Mem. (Kb) Burst increase Burst decrease Spread burst Burst increase Burst decrease Spread burst

100 0.753 0.698 0.663 - - -

200 0.905 0.884 0.839 - - -

500 0.944 0.934 0.926 0.785 0.808 0.788

1000 0.956 0.924 0.926 0.951 0.930 0.953

2000 0.953 0.932 0.928 0.944 0.953 0.957

5000 0.959 0.936 0.932 0.957 0.966 0.958

10000 0.953 0.934 0.933 0.953 0.978 0.957

In the remaining experiments, we study how the performance of RBD is affected by different

parameter settings. Each time we vary one parameter while fixing the others to their default values:

d = 4, M(U )/M = 0.5, β = 100, α = 0.1, K = 10, and M = 2Mb. Using the campus dataset, Table

6 presents the performance of RBD with respect to β , which varies from 20 to 1000. When the

threshold β is very small, the numbers of false positives and false negatives are large because the

error in spread estimation can easily overcome the threshold. As β increases, there are fewer spread
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bursts and the numbers of false positives and false negatives drop even faster, improving F1-score

above 0.9 when β is 100 or more.

Table 6. Performance of RBD in spread burst detection w.r.t. β , under α = 0.1, K = 10, andM = 2Mb, using
the campus dataset

β Ground truth Reported TP FP FN F1-score

20 2905 3396 2600 796 305 0.825

50 1122 1278 1030 248 92 0.858

100 580 594 545 49 35 0.928

200 298 300 280 20 18 0.936

500 103 104 97 7 6 0.937

1000 51 48 47 1 4 0.949

Table 7 presents the performance of RBD with respect to α , which varies from 0.5 to 0.01. RBD

performs well across the whole range. As we decrease α , there are fewer bursts, which is expected

as it becomes more difficult to meet the condition (3), and F1-score decreases slightly.

Table 7. Performance of RBD in spread burst detection w.r.t. α , under β = 100, K = 10, andM = 2Mb, using
the campus dataset

α Ground truth Reported TP FP FN F1-score

0.5 1383 1415 1331 84 52 0.951

0.2 895 913 835 78 60 0.923

0.1 580 594 545 49 35 0.928

0.05 402 406 368 38 34 0.910

0.02 279 287 260 27 19 0.918

0.01 237 232 214 18 23 0.912

Using the campus dataset, the left half of Table 8 presents the performance of RBD by varying

both α and β . When β ≥ 100, RBD performs very well across the whole range of α . But when β is

small such as 20, the flow’s spread at the low end of a burst increase (or decrease) is even smaller,

proportional to α . The error in spread estimation by sketchU can overcome such a small spread,

resulting in lower F1-score.

Table 8. F1-score of RBD in spread burst detection, w.r.t. to β and α , where K = 10, using the campus dataset
(M = 2Mb) and the CAIDA-1 dataset (M = 5Mb), respectively

Campus dataset CAIDA-1 dataset

β
α

0.5 0.2 0.1 0.05 0.02 0.01 0.5 0.2 0.1 0.05 0.02 0.01

20 0.90 0.87 0.85 0.84 0.83 0.81 0.36 0.80 0.86 0.85 0.84 0.85

50 0.93 0.90 0.89 0.88 0.86 0.88 0.86 0.94 0.94 0.95 0.85 0.86

100 0.96 0.94 0.94 0.93 0.92 0.92 0.95 0.95 0.96 0.96 0.95 0.87

200 0.96 0.95 0.94 0.92 0.93 0.94 0.97 0.98 0.99 0.97 0.99 0.99

500 0.97 0.97 0.97 0.97 0.96 0.97 1.00 0.99 1.00 0.99 0.99 1.00

1000 0.95 0.98 0.97 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Using the campus dataset, the left half of Table 9 presents the performance of RBD with respect

to K , which varies from 2 to 100. When K increases, there are more bursts, which can be easily

seen from the definition (3) as a large K gives more room for bursts to form. But K does not have

significant impact on the detection performance of RBD.
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Table 9. Performance of RBD in spread burst detection with respect to K , using the campus dataset, under the
parameter settings of β = 100, α = 0.1, andM = 2Mb, and using the CAIDA-1 dataset, under the parameter
settings of β = 100, α = 0.1, andM = 5Mb, respectively.

Campus dataset CAIDA-1 dataset

K Ground truth Reported F1-score Ground truth Reported F1-score

2 507 532 0.916 103 107 0.971

5 555 566 0.910 112 117 0.969

10 580 594 0.928 118 120 0.958

20 584 594 0.927 123 124 0.955

50 589 605 0.918 125 126 0.956

100 589 602 0.911 125 126 0.956

Additional Experiments using CAIDA Datasets: We expand our evaluation of RBD with

five additional datasets, which are packet traces from different Internet routers downloaded from

CAIDA [26]. These five datasets are denoted as CAIDA-1, CAIDA-2, CAIDA-3, CAIDA-4, and

CAIDA-5, with 1,389,150,056 packets, 1,080,151,501 packets, 1,837,095,662 packets, 2,284,636,747

packets, and 1,603,885,200 packets, respectively. Each dataset is 1 hour long. Because their traffic

intensity is much larger than our campus dataset, we set each epoch to 1 minute. We repeat the

previous experiments of RBD for the campus dataset on each of the CAIDA datasets. If not specified

otherwise, the default parameters are α =0.1, β = 100, and K = 10. The default memory allocation

is M = 5Mb for CAIDA-1, CAIDA-2, and CAIDA-5, and M = 10Mb for CAIDA-3 and CAIDA-4,

depending on the size of the dataset. For CAIDA-1, the experimental results on F1-scores are

presented in the right half of Tables 5, 8 and 9.

From these experimental results, we can draw similar conclusions as we did from the results

of the campus dataset: The right half of Table 5 presents the performance of RBD in F1-score

using CAIDA-1 dataset under different memory allocations. The performance of RBD is improved

with more memory, e.g., from 500Kb to 1Mb, but as the memory further increases, the rate of

performance improvement becomes small. The right half of Table 8 presents the performance of

RBD with respect to β and α . RBD works very well when β is large (e.g., 100 or greater for steep

bursts), but works less well when β is small (e.g., 20), particularly when α is also very small or is

very large (e.g., 0.5 for very shallow bursts). We stress that in network applications such as anomaly

detection, steep bursts are of more interest. The right half of Table 9 presents the performance of

RBD with respect to K . We can see that the performance of RBD is not very sensitive to K .
Similar conclusions can be drawn from the results for CAIDA-2 through CAIDA-5, which are

included in Appendix C for verification.

Additional Experiments using E-commerce Dataset: Finally we present our evaluation

results on the E-commerce dataset, which is smaller in comparison to the network packet traces,

containing 206859 products (flows) and 109,950,747 reviews (items) recorded in 61 days, with each

epoch being a day. Detecting spread burst can help track the popularity of the products. We repeat

the same experiments on RBD over this dataset. If not specified otherwise, the default parameters

are α =0.1, β = 400, K = 10, andM = 2Mb.

Table 10 presents the performance of RBD with respect to memory allocation, in terms of burst

increase, burst decrease and spread burst detection. The performance of RBD is improved with

more memory, but after the memory reaches a certain level (such as 2000Kb or 2Mb), the rate of

performance improvement is generally moderate with additional memory. Table 11 presents the

performance of RBD with respect to β and α . RBD works well for steep bursts with large β values,

but works less well when β is small, particularly when α is also very small or is very large (e.g., 0.5

for very shallow bursts). We believe that steep bursts (jumping popularity of products) are again of
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more interest. Table 12 presents the performance of RBD with respect to K . We can see that the

performance of RBD has only modest sensitivity to K .

Table 10. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with β = 400, α = 0.1, and K = 10, using the E-commerce dataset.

Memory (Kb) Increase Decrease Spread burst

500 0.267 0.314 0.366

1000 0.603 0.750 0.642

2000 0.837 0.811 0.913

5000 0.930 0.952 0.932

10000 1.000 0.952 0.952

Table 11. F1-score of RBD in spread burst detection, w.r.t. β and α , under K=10 and M = 2Mb, using the
E-commerce dataset.

β
α

0.5 0.2 0.1 0.05 0.02 0.01

200 0.71 0.73 0.80 0.79 0.57 0.52

400 0.78 0.77 0.91 0.80 0.83 0.67

600 0.77 0.85 0.92 0.89 1.00 0.86

800 0.77 0.71 0.80 0.80 0.80 1.00

1000 0.77 0.91 1.00 1.00 1.00 1.00

Table 12. Performance of RBD in spread burst detection, w.r.t. K , under β = 400, α = 0.1, andM = 2Mb, using
the E-commerce dataset.

K Ground truth Reported F1-score

2 14 15 0.965

5 19 23 0.904

10 21 25 0.913

20 21 26 0.893

50 22 27 0.897

7 CONCLUSION
This paper introduces a new problem of detecting burst increases, burst decreases and spread

bursts in real time. It proposes a new self-adaptive sketch (SAS) for recording data items in an

evolving data structure and providing flow estimation at any time with low overhead. It uses the

self-adaptive sketch as the building block to design a new super spreader identifier (RSI), which

detects super spreaders in real time with low overhead. It then uses the super spreader identifier

as the building block to design an efficient, real-time solution (RBD) for spread burst detection.

We evaluate SAS, RSI and RBD experimentally based on six real network traffic traces and an

E-commerce dataset. The results demonstrate that SAS and RSI significantly outperform the state

of the art, and RBD detects spread bursts with good accuracy and efficiency. As a future work,

we will experimentally study the proposed solution in other application contexts to evaluate its

generality and derive context-specific optimizations.
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APPENDIX A. SAS RECORDING ALGORITHM

Algorithm 4: Record a data item ⟨f , e⟩ in SAS

Input: ⟨f , e⟩, A
Output: True if an update event occurs or false otherwise

1 compute h(f , e), G(f , e)

2 if B = 1 then
3 if A[h(f , e)] < 31 and A[h(f , e)] < G(f , e) then
4 if G(f , e) < 31 then
5 P := P − 2

−A[h(f ,e )]

m + 2
−G (f ,e )

m , A[h(f , e)] := G(f , e)

6 else
7 P := P − 2

−A[h(f ,e )]

m , A[h(f , e)] := 31

8 return true

9 else if G(f , e) ≥ 16 then
10 B := 1, P := 0

11 for i ∈ [0,m) do
12 if A[i].b = 0 then
13 A[i] := max{A[i].r [0],A[i].r [1]}

14 else
15 A[i] := A[i].r4

16 P := P + 2
−A[i ]

m

17 if G(f , e) < 31 then
18 P := P − 2

−A[h(f ,e )]

m + 2
−G (f ,e )

m , A[h(f , e)] := G(f , e)

19 else
20 P := P − 2

−A[h(f ,e )]

m , A[h(f , e)] := 31

21 return true

22 else if A[h(f , e)].b = 0 then
23 compute h′(f , e)

24 if A[h(f , e)].r [h′(f , e)] < G(f , e) then
25 if G(f , e) ≤ 3 then
26 P := P − 2

−A[h(f ,e )].r [h′(f ,e )]

2m + 2
−G (f ,e )

2m ,A[h(f , e)].r [h′(f , e)] := G(f , e)

27 else
28 P := P − 2

−A[h(f ,e )].r [0]+2−A[h(f ,e )].r [1]

2m + 2
−G (f ,e )

m , A[h(f , e)].r4 := G(f , e),
A[h(f , e)].b := 1

29 return true

30 else
31 if A[h(f , e)].r4 < G(f , e) then
32 P := P − 2

−A[h(f ,e )].r 4

m + 2
−G (f ,e )

m , A[h(f , e)].r4 := G(f , e)

33 return true

34 return false
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APPENDIX B. PROOF OF THEOREM 1
Due to the pseudo randomness of the hash function h(·, ·) ∈ [0,m − 1], any data item ⟨f , e⟩ will be
randomly hash to a five-bit unit A[h(f , e)] with the probability of

1

m . Without loss of generality,

we consider an arbitrary unit A[i] with 0 ≤ i < m. Define ∆Pi as the accumulative variation in P
caused by the update in A[i]. Summing up accumulative variation in P across all units, we have

P = 1 +

m−1∑
i=0

∆Pi (9)

We have the following lemma for ∆Pi .

Lemma 1. At any time the probability for the next arrival data item to update A[i] with 0 ≤ i < m
is 1

m + ∆Pi .

Proof. Depending on the interpretation of A[i], ∆Pi is represented differently. There are three

cases.

• Case 1: A[i].b = 0. In this case, A[i] contains two two-bit registers, A[i].r [0] and A[i].r [1].
Since each item will go to either one with even probability, we consider A[i].r [0] without loss of
generality. Let the number of data items that update A[i].r [0] be z and the arrival sequence of these
items are ⟨f1, e1⟩, ⟨f2, e2⟩, ..., ⟨fz, ez⟩. Since A[i].b = 0, we know these data items must follow the

first case of Section 3.2 as otherwise other cases will change the status of A[i].b. Each time an item

⟨fj , ej ⟩ with 1 ≤ j ≤ z arrives, the value of P will be changed by{
− 2

−G (fj−1 ,ej−1)

2m + 2
−G (fj ,ej )

2m , if j ≥ 2;

− 1

2m +
2
−G (f

1
,e
1
)

2m , if j = 1.
(10)

Moreover, the value of A[i].r [0] will be changed from G(fj−1, ej−1) to G(fj , ej ) if j ≥ 2 or from 0 to

G(f1, e1) if j = 1. Apparently, the current value ofA[i].r [0] isG(fz, ez ). After ⟨f1, e1⟩, ⟨f2, e2⟩, ..., ⟨fz, ez⟩
are recorded in A[i].r [0], the value of P will be changed by

−
1

2m
+
2
−G(f1,e1)

2m
+

z∑
j=2

[−
2
−G(fj−1,ej−1)

2m
+
2
−G(fj ,ej )

2m
]

= −
1

2m
+
2
−G(fz ,ez )

2m

= −
1

2m
+
2
−A[i].r [0]

2m
(11)

The same holds for A[i].r [1]. Combining A[i].r [0] and A[i].r [1], we have

∆Pi = −
1

m
+
2
−A[i].r [0]

2m
+
2
−A[i].r [1]

2m
(12)

Consider an arbitrary data item ⟨f , e⟩. It will change the data structure of A[i] if (1) h(f , e) = i ,
h′(f , e) = 0 and G(f , e) > A[i].r [0]; or (2) h(f , e) = i , h′(f , e) = 1 and G(f , e) > A[i].r [1]. The

probability for either condition to happen is
2
−A[i ].r [0]

2m + 2
−A[i ].r [0]

2m = 1

m + ∆Pi . Therefore, the lemma

holds for the case of A[i].b = 0.

• Case 2: A[i].b = 1. In this case, A[i] contains a four-bit register, A[i].r4. Let the number of data

items that updateA[i].r4 be z and the arrival sequence of these items are ⟨f1, e1⟩, ⟨f2, e2⟩, ..., ⟨fz, ez⟩.
Now, we consider three processes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:25

The first process is the recording of items before (excluding) the arrival of ⟨f1, e1⟩. SinceA[i].b = 0

holds all the time, according to the analysis of Case 1, the variation in the value of P is − 1

m +
2
−A[i ].r [0]

2m + 2
−A[i ].r [1]

2m .

The second process is the recording of item ⟨f1, e1⟩. At that timeA[i].b = 0 and 3 < G(f1, e1) ≤ 15,

corresponding to the second case of Section 3.2, from which we know the variation in the value of

P is − 2
−A[i ].r [0]

2m − 2
−A[i ].r [1]

2m + 2
−G (f

1
,e
1
)

m .

The third process is the recording of item ⟨f2, e2⟩,..., ⟨fz, ez⟩. Since A[i].b = 1 and 3 < G(fj , ej ) ≤
15 ∀2 ≤ j ≤ z always hold, this process follows the third case of Section 3.2. For each item ⟨fj , ej ⟩,

its recording will change the value of P by − 2
−G (fj−1 ,ej−1)

m + 2
−G (fj ,ej )

m with 2 ≤ j ≤ z. Overall the

variation in P in this process is − 2
−G (f

1
,e
1
)

m + 2
−G (fz ,ez )

m . Moreover, we know the update of the last

item ⟨fz, ez⟩ will set A[i].r4 = G(fz, ez ).
Combing the above three processes, we know the total variation in the value of P is

∆Pi = −
1

m
+
2
−A[i].r [0]

2m
+
2
−A[i].r [1]

2m

−
2
−A[i].r [0]

2m
−
2
−A[i].r [1]

2m
+
2
−G(f1,e1)

m

−
2
−G(f1,e1)

m
+
2
−G(fz ,ez )

m

= −
1

m
+
2
−G(fz ,ez )

m

= −
1

m
+
2
−A[i].r4

m
(13)

Consider an arbitrary data item ⟨f , e⟩. It will change the data structure of A[i] if h(f , e) = i and

G(f , e) > A[i].r4, which happen with the probability of
2
−A[i ].r 4

m =
1

m + ∆Pi . Therefore, the lemma

holds for the case of A[i].b = 1.

• Case 3: B = 1. In this case,A[i] is a five-bit register. Let the number of data items that updateA[i]
be z and the arrival sequence of these items are ⟨f1, e1⟩, ⟨f2, e2⟩, ..., ⟨fz, ez⟩. We knowG(fj , ej ) > 15

with ∀1 ≤ j ≤ z, corresponding to the fourth case of Section 3.2, from which we know initially P

was recalculated as

∑m−1
i=0

2
−A[i ]

m . So the variation caused byA[i] in the value of P is
2
−A[i ]

m . According

to (8), we will change the value of P for when recording an item ⟨fj , ej ⟩ by{
− 2

−A[i ]

m + 2
−G (fj ,ej )

m , if G(fj , ej ) < 31

− 2
−A[i ]

m , if G(fj , ej ) ≥ 31;

(14)

and updateA[i] = min{G(fj , ej ), 31}. After recording all items,A[i] = G(fz, ez ) and the accumulative

variation in the value of P is

∆Pi =

{
− 1

m +
2
−A[i ]

m , if A[i] < 31

− 1

m , if A[i] = 31.
(15)

Consider an arbitrary data item ⟨f , e⟩. It will change the data structure of A[i] if h(f , e) = i and

G(f , e) > A[i], which happens with the probability of
2
−A[i ]

m =
1

m + ∆Pi if A[i] < 31, and the

probability of 0 =
1

m + ∆Pi , if A[i] = 31 as A[i] can not be updated any more. Therefore, the lemma

holds for the case of B = 1. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:26 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

Lemma 1 is applicable to any unit A[i], ∀0 ≤ i < m. Combining all units in A, we know at any

time the probability for the next arrival data item to update A is

∑m−1
i=0 [ 1

m + ∆Pi ] = P . The equation
is derived because of (9). Therefore, the theorem holds.
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APPENDIX C. ADDITIONAL EXPERIMENTAL RESULTS FOR CAMPUS DATASETS AND
CAIDA DATASETS
In Tables 13-15, the first column varies the memory allocation from 100Kb to 10000Kb (i.e., 10Mb),

the second column shows the actual number of burst increases in the data (ground truth), the

third column shows the number of reported burst increases by RBD, the fourth column shows the

number of TPs, the fifth column shows the number of FPs, the sixth column shows the number of

FNs, and the last column shows the F1-score.

Table 13. Performance of RBD in spread burst increase detection with respect to memory allocation, using
the campus dataset.

Memory (Kb) Ground truth Reported TP FP FN F1-score

100 1091 1347 919 428 172 0.753

200 1091 1144 1012 132 79 0.905

500 1091 1108 1038 70 53 0.944

1000 1091 1103 1049 54 42 0.956

2000 1091 1091 1040 51 51 0.953

5000 1091 1110 1056 54 35 0.959

10000 1091 1097 1043 54 48 0.953

Table 14. Performance of RBD in burst decrease detection with respect to memory allocation, using the
campus dataset.

Memory (Kb) Ground truth Reported TP FP FN F1-score

100 807 1170 690 480 117 0.698

200 807 891 751 140 56 0.884

500 807 832 766 66 41 0.934

1000 807 817 751 66 56 0.924

2000 807 818 758 60 49 0.932

5000 807 824 764 60 43 0.936

10000 807 833 766 67 41 0.934

Table 15. Performance of RBD in spread burst detection with respect to memory allocation, using the campus
dataset.

Memory (Kb) Ground truth Reported TP FP FN F1-score

100 580 729 434 295 146 0.663

200 580 628 507 121 73 0.839

500 580 608 550 58 30 0.926

1000 580 608 550 58 30 0.926

2000 580 594 545 49 35 0.928

5000 580 600 550 50 30 0.932

10000 580 598 550 48 30 0.933
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Table 16. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with β = 100, α = 0.1, and K = 10, using the CAIDA-2 dataset, containing 1,080,151,501 packets.

Memory (Kb) Increase Decrease Spread burst

500 0.831 0.814 0.819

1000 0.918 0.862 0.918

2000 0.947 0.929 0.920

5000 0.938 0.958 0.920

10000 0.969 0.958 0.912

Table 17. F1-score of RBD in spread burst detection, w.r.t. β and α , where K=10 and M = 5Mb, using the
CAIDA-2 dataset, containing 1,080,151,501 packets.

β
α

0.5 0.2 0.1 0.05 0.02 0.01

20 0.54 0.67 0.78 0.82 0.69 0.91

50 0.82 0.86 0.85 0.84 0.70 0.92

100 0.89 0.94 0.92 0.94 0.96 0.92

200 0.94 0.93 0.95 0.96 1.00 1.00

500 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00

Table 18. Performance of RBD in spread burst detection, w.r.t. K , with β = 100, α = 0.1, andM = 5Mb, using
the CAIDA-2 dataset, containing 1,080,151,501 packets.

K Ground truth Reported F1-score

2 43 48 0.923

5 46 51 0.928

10 47 53 0.920

20 52 59 0.919

50 52 59 0.919

Table 19. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with β = 100, α = 0.1, and K = 10, using the CAIDA-3 dataset, containing 1,837,095,662 packets.

Memory (Kb) Increase Decrease Spread burst

1000 0.676 0.718 0.705

2000 0.913 0.906 0.914

5000 0.954 0.971 0.988

10000 0.937 0.965 0.909

20000 0.948 0.954 0.954

Table 20. F1-score of RBD in spread burst detection, w.r.t. β and α , where K=10 and M = 10Mb, using the
CAIDA-3 dataset, containing 1,837,095,662 packets.

β
α

0.5 0.2 0.1 0.05 0.02 0.01

20 0.56 0.76 0.76 0.49 0.78 0.76

50 0.85 0.92 0.91 0.90 0.79 0.76

100 0.93 0.92 0.91 0.91 0.93 0.80

200 0.96 0.97 0.94 0.95 0.99 0.99

500 1.00 1.00 0.98 0.98 1.00 1.00

1000 0.97 0.97 1.00 1.00 1.00 1.00
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Table 21. Performance of RBD in spread burst detection, w.r.t. K , with β = 100, α = 0.1, andM = 10Mb, using
the CAIDA-3 dataset, containing 1,837,095,662 packets.

K Ground truth Reported F1-score

2 78 78 0.897

5 88 88 0.909

10 88 88 0.909

20 89 89 0.910

50 90 90 0.911

Table 22. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with β = 100, α = 0.1, and K = 10, using the CAIDA-4 dataset, containing 2,284,636,747 packets.

Memory (Kb) Increase Decrease Spread burst

500 0.344 0.335 0.328

1000 0.692 0.703 0.699

2000 0.842 0.836 0.852

5000 0.902 0.901 0.897

10000 0.918 0.915 0.914

20000 0.928 0.926 0.904

50000 0.913 0.915 0.906

Table 23. F1-score of RBD in spread burst detection, w.r.t. β and α , where K=10 and M = 10Mb, using the
CAIDA-4 dataset, containing 2,284,636,747 packets.

β
α

0.5 0.2 0.1 0.05 0.02 0.01

20 0.63 0.81 0.83 0.83 0.90 0.87

50 0.91 0.91 0.91 0.92 0.92 0.88

100 0.94 0.93 0.91 0.95 0.96 0.91

200 0.92 0.94 0.92 0.95 0.94 0.95

500 0.98 0.98 0.98 0.98 0.99 0.99

1000 0.98 0.97 0.97 0.98 0.99 0.99

Table 24. Performance of RBD in spread burst detection, w.r.t. K , with β = 100, α = 0.1, andM = 10Mb, using
the CAIDA-4 dataset, containing 2,284,636,747 packets.

K Ground truth Reported F1-score

2 506 516 0.927

5 627 646 0.910

10 668 690 0.914

20 675 696 0.914

50 677 699 0.914
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Table 25. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with β = 100, α = 0.1, and K = 10, using the CAIDA-5 dataset, containing 1,603,885,200 packets.

Memory (Kb) Increase Decrease Spread burst

500 0.707 0.713 0.716

1000 0.897 0.898 0.907

2000 0.962 0.966 0.955

5000 0.962 0.966 0.969

10000 0.963 0.969 0.965

Table 26. F1-score of RBD in spread burst detection, w.r.t. β and α , where K=10 and M = 5Mb, using the
CAIDA-5 dataset, containing 1,603,885,200 packets.

β
α

0.5 0.2 0.1 0.05 0.02 0.01

20 0.47 0.66 0.77 0.85 0.89 0.85

50 0.82 0.95 0.97 0.97 0.89 0.85

100 0.97 0.97 0.97 0.97 0.96 0.86

200 0.97 0.96 0.97 0.97 0.97 0.95

500 0.97 0.97 0.97 0.97 0.97 0.96

1000 1.00 1.00 0.99 0.99 1.00 0.99

Table 27. Performance of RBD in spread burst detection, w.r.t. K , with β = 100, α = 0.1, andM = 5Mb, using
the CAIDA-5 dataset, containing 1,603,885,200 packets.

K Ground truth Reported F1-score

2 324 319 0.970

5 344 338 0.971

10 346 341 0.969

20 351 345 0.971

50 355 349 0.972
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