
Single Update Sketch with Variable Counter Structure
Dimitrios Melissourgos

∗

Grand Valley State University

Allendale, MI, USA

dmelissourgos@gmail.com

Haibo Wang
∗

University of Kentucky

Lexington, KY, USA

wanghaibo@uky.edu

Shigang Chen

University of Florida

Gainesville, FL, USA

sgchen@cise.ufl.edu

Chaoyi Ma

University of Florida

Gainesville, FL, USA

ch.ma@ufl.edu

Shiping Chen

University of Shanghai for Science

and Technology

Shanghai, China

chensp@usst.edu.cn

ABSTRACT
Per-flow size measurement is key to many streaming applications

and management systems, particularly in high-speed networks. Per-

forming such measurement on the data plane of a network device

at the line rate requires on-chip memory and computing resources

that are shared by other key network functions. It leads to the need

for very compact and fast data structures, called sketches, which

trade off space for accuracy. Such a need also arises in other ap-

plication context for extremely large data sets. The goal of sketch

design is two-fold: to measure flow size as accurately as possible

and to do so as efficiently as possible (for low overhead and thus

high processing throughput). The existing sketches can be broadly

categorized to multi-update sketches and single update sketches.

The former are more accurate but carry larger overhead. The latter

incur small overhead but their accuracy is poor. This paper pro-

poses a Single update Sketch with a Variable counter Structure

(SSVS), a new sketch design which is several times faster than the

existing multi-update sketches with comparable accuracy, and is

several times more accurate than the existing single update sketches

with comparable overhead. The new sketch design embodies sev-

eral technical contributions that integrate the enabling properties

from both multi-update sketches and single update sketches in a

novel structure that effectively controls the measurement error

with minimum processing overhead.

PVLDB Reference Format:
Dimitrios Melissourgos, Haibo Wang, Shigang Chen, Chaoyi Ma,

and Shiping Chen. Single Update Sketch with Variable Counter Structure.

PVLDB, 16(13): 4296 - 4309, 2023.

doi:10.14778/3625054.3625065

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/DimitrisMel/SSVS. Visited on 09/17/2023.

∗
Both authors contributed equally to this research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 13 ISSN 2150-8097.

doi:10.14778/3625054.3625065

1 INTRODUCTION
Streaming algorithms process a continuous sequence of data items

at high rate by scanning the items once for useful statistics. One

typical example of high-rate data streams are the packet streams on

the Internet, where each packet carries a flow ID, all packets with

the same ID form a flow, and a classic measurement is per-flow size

(i.e., number of packets in each flow), as a key function of NetFlow

[10], which is in turn the key tool for numerous network manage-

ment systems. Measuring per-flow size on a high-speed network

has applications in billing, traffic engineering, load balancing, anom-

aly detection, heavy hitter detection, etc.[6, 12, 20, 29, 47, 48, 58].

While we will use packet streams to motivate for our work in this

paper, it should be stressed that data streaming and its algorithms

have broad applications in web services, e-commerce, stock trading,

social networks, in-game player experience, geospatial services, dis-

tributed sensing, and network monitoring [7, 17, 19, 24, 25, 34, 41].

Its practical importance is evident from industrial pushes such as

Amazon Kinesis Streams [44].

Implementing per-flow size measurement on the data plane of

a modern router or switch is a challenging task [4, 9, 11, 26, 27,

58] because it competes for limited on-chip resources on network

processors that process and forward packets at extremely high

speeds in the order of tens or hundreds of millions of packets

per second. Because the on-chip memory (e.g., SRAM) and the

processing unit have to be committed to the key network functions

such as routing-table lookup, traffic shaping, access control, and

deep packet inspection, the resources that can be allocated to a

measurement function are often limited, especially when there are

multiple co-existing measurement functions, each for a different

purpose. Compact and efficient data structures, called sketches, have

been the preferred choice to provide per-flow size estimations with

limitedmemory allocation [4, 8, 9, 11, 15, 26, 27, 30, 32, 50, 52, 53, 59].

Beyond networks, in the broader context of applications, even with

datacenter resources, resource contention (including memory) can

still be a challenge for very large datasets, which makes sketches

useful [28]. That is more true if one wants to process large datasets

by using ordinary computing resources (such as desktops) for cost

or convenience reasons.

Given a certain amount of allocated memory, there are two

key performance metrics to consider in sketch design, flow-size
estimation accuracy and per-packet processing overhead. Accuracy
is critical to supporting the applications that are built on flow size

https://doi.org/10.14778/3625054.3625065
https://github.com/DimitrisMel/SSVS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3625054.3625065

information. Overhead is critical to ensuring that the measurement

function does not cause a bottleneck that constrains the streaming

throughput. The existing work can be classified into two categories,

multi-update sketches [4, 8, 11, 15] and single update sketches [26,
27, 59]. The former focuses on estimation accuracy, whereas the

latter focuses on processing overhead.

When the number of counters in an allocated memory is far

fewer than the number of flows to be measured, each counter has

to record the data items (e.g., packets) from multiple flows, causing

inter-flow noise. An interesting approach is to instead record each

flow in multiple counters, mixing with different flows for noise

control or reduction. These multi-update sketches have to visit mul-

tiple counters for each arrival data item and update one or multiple

counters, resulting in higher overhead. They include CountMin

(CM) [11], Count Sketch (CS) [8], Counter Update (CU) [15], and

their numerous variants, including those that replace regular coun-

ters with self-adjusting counters (SC) [4], active counters (AC) [39]

or Counter Pyramid [52] (which incurs more updates in the worse

case).

Tominimize per-item processing time, the single update sketches

still record each flow in multiple counters, but only update one of

these counters for each data item. They include randomized counter

sharing (RCS) [26, 27] and its variant using active counters (RCS-

AC) [59]. It has another variant that uses counter tree [9], which

has higher processing time and incurs multiple counter updates

for some data items while making one counter update for other

items. The problem of the existing single update sketches is that

their accuracy is very poor.

The state of the art is illustrated in Figure 1, where the x-
axis is the average error in flow size estimation and the y-axis
is the per-packet processing time. The existing sketches are placed

in the figures based on the experimental results that will be ex-

plained later. For example, CU-SC is Counter Update [15] with

self-adjusting counters [4]; it achieves the best accuracy among

multi-update sketches but has high processing overhead. The figure

shows that multi-update sketches are clustered in the upper-left

portion, whereas the single update sketches are clustered in the

lower-right portion, making tradeoff between estimation accuracy

and processing overhead.

Can we design a novel sketch that fills the empty lower-left

portion of the figure, with both high accuracy and low overhead?

This has been an unanswered question, without a proof on the

hard limitation of accuracy-overhead tradeoff or a new sketch that

demonstrates the feasibility of achieving both. This paper proposes

a new sketch called SSVS, which fits in that void, with an average

error in the rank of the best multi-update sketch and a processing

overhead in the rank of the best single update sketch. We have

three technical contributions. The first contribution is to integrate

self-adjusting counters and active counters in a variable counter

structure where the counters expand first in size and then in expo-

nent, creating a very large range and a dynamically adjusting small

error, with a maximum counter size of just 16 bits. The second

contribution is to integrate positive/negative noise cancellation

with single counter update, which is key to achieve both accuracy

and efficiency. The third contribution is to introduce the concept of

noise interval that blocks out large noise component in flow size es-

timation and thus improve estimation accuracy. Our experimental

Figure 1: Comparison of sketches in the overhead-accuracy
space for the CAIDA data set. The horizontal axis is the aver-
age error of all flows. The vertical axis is per-packet process-
ing time. Each sketch is placed based on the experimental
results (discussed later in the paper).

results show that (1) the new sketch achieves accuracy comparable

to the most-accurate existing sketch, CU-SC [4], with one-tenth

of its overhead, and (2) the new sketch achieves overhead similar

to the most-efficient existing sketch, RCS [26, 27], with multi-fold

better accuracy.

2 PRELIMINARIES
2.1 System Model
Consider a data stream measurement module that processes a large

sequence of data items at a high rate. Each data item carries a flow

ID, all items with the same ID form a flow, and the module measures

the size of each flow, i.e., the number of items in each flow. As an

example, it can be a traffic measurement module implemented on

the data plane of a high-speed network device, where one of its

functions is to measure the number of packets (i.e., data items) in

each flow, under limited available on-chip resources in memory and

processing. The flow ID is defined based on the application need.

It may be source address, destination address, source-destination

address pair, TCP five-element tuple, or any combination of header

fields carried by the packet. The measurement happens in epochs

of a certain length. The module records statistics into a sketch data

structure as it processes the data items. At the end of each epoch,

the sketch with its recorded statistics is offloaded to a server where

queries on flow sizes are answered. The module then resets its data

structure to start the next epoch. For offline query, given a flow ID,

the server can estimate the size of the flow in any past epoch from

the stored sketches. For online query, given a flow ID, the module

can estimate the size of the flow in the current epoch.

2.2 Related Work
To enhance accuracy and efficiency, the prior work has pursued two

orthogonal directions: improving sketch structure and designing

efficient counters. Table 1 provides a summary of existing work.

2.2.1 Sketch Structures. There are broadly two sketch structures

for per-flow size measurement: multi-update sketches and single
update sketches. The multi-update sketches include CountMin (CM)

[11], Counter Update (CU) [15], Count Sketch (CS) [8] and their

variants. CM hashes each flow f to d counters in a two-dimensional

counter array, and increases all the d counters by one for each

arrival packet of the flow. To estimate the size of the flow, it returns

the minimum value of the d counters. CU differs from CM by only

increasing the smallest one(s) of the d counters by one for each

arrival packet of the flow. However, it still has to perform d memory

accesses to retrieve the current values of the counters. CS either

increases or decreases all the d counters by one, based on a pseudo-

random hash flag of the flow. Each counter provides an unbiased

estimate of the flow size. CS uses the median value of the d counters

as the final estimate. CM/CU/CS and their variants are widely used

in network traffic measurement research [18, 30, 50, 54–58].

The most notable single update sketch is Randomized Counter

Sharing (RCS) [26, 27]. RCS also maps each flow f to l counters,
but only randomly selects one of the l counters to increase for each
arrival item of flow f . Because the counters are shared by all flows,

each counter of flow f carries noise from other flows. To estimate

the size of flow f , RCS returns the sum of its l counters subtracted by
an average noise measured across all counters. RCS adopts a large

value for l (such as 50 in [26, 27]) to ensure sufficiently randomized

noise distribution, but the total noise present in a flow’s counters

is proportional to l .
There are layered sketch structures, including Counter Braids

[32] and Pyramid Sketch [52], built on top of CM/CU, and Counter

Tree [9], built on top of RCS. They use small counters at the bottom

layer, and these counters will overflow into higher layers recursively.

They are more memory efficient, thanks to small counters, but

they have variable processing time due to the need to operate

on multiple layers of CM/CU/RCS when overflow happens. Their

worst-case processing time is determined by the number of layers.

Recent research shows that using more efficient counter designs

outperforms multiple layers of small counters [4, 51].

The Bucketized Rank Indexed Counter (Brick) [22] partitions a

counter array into groups of k counters each, called bricks. Each
brick is multi-layered, with k small counters at the bottom, which

overflows recursively to higher layers. Different from Counter

Braids where each counter overflows into multiple higher-layer

counters, each counter in Brick overflows into a single higher-layer

counter. However, each layer requires an index array to keep in-

formation about where each of its counters overflows into. It thus

has higher memory overhead than Counter Braids under the same

counting range.

CM, CU, CS and RCS are generic sketch structures that can adopt

different counter designs, which will be elaborated next.

2.2.2 Efficient Counters. A regular counter of r bits has a range
of [0, 2r). To expand the range, DIScount COunting (DISCO) [21]

sacrifices counting accuracy by mapping the counter values to a

sequence of integers with increasing gaps, {0, 1, b
2−1
b−1 , ...,

b2
r −1−1
b−1 },

where b > 1, which spans a much wider range but has a much

coarser counting granularity. DISCO increments its counter proba-

bilistically, where the exact probability is determined by the current

counter value. Its range is O(b2
r
), but its counting is highly in-

accurate. Counter Estimation Decoupling for Approximate Rates

(CEDAR) [42] improves over DISCO with a mapping function that

minimizes the maximum relative error in counting. The Indepen-

dent Counter Estimation Buckets (ICE-Buckets) [13] partitions a

counter array into buckets of k counters each. Each bucket be-

gins with a small-ranged mapping function. Whenever a counter

overflows, it switches to a larger-ranged mapping function.

Self-adjusting counters (SCs) in [4] begin as 8-bit regular coun-

ters. When counters overflow, they will merge with neighboring

counters in the array to create larger-sized counters. Self-Adjusting

Lean Streaming Analytics (SALSA) implement SCs in various sketch

structures such as CM, CU, and CS to measure per-flow size; they

are denoted as CM-SC, CU-SC, and CS-SC, respectively.

Another approach to expand counter range is through sampling.

Additive error counter [3] begins with a sampling probability of

1. Each time overflow occurs, the sampling probability is halved.

CM with additive error counters is called Additive Error Estimator

(AEE) [3]. All counters in AEE share the same sampling probabil-

ity, which is determined by the counter that overflows the most.

This approach is efficient in tracking the sizes of large flows, but

aggressive sampling across all counters may result in poor size

estimation for small and medium flows or even completely miss

some small flows [23, 28, 31], which is undesirable for per-flow size

measurement, as is considered in this paper.

Active counter (ACs) [39] splits its bits in two parts: a number

part v and an exponent part e . Its value is v × 2
e
. To increase the

counter by one, we must do so probabilistically, with a probability

of
1

2
e . Combining RCS [26, 27] and active counters produce a sketch

denoted as RCS-AC [59].

Self-adaptive counters [51] also have a number part and an ex-

ponent part. The exponent part has a variable length, its bits must

be all ones, and the number of ones is the exponent value. The two

parts are separated by a bit zero. Its range is limited, comparing with

AC [39]. For example, for a 16-bit counter, if we want at least 10

bits in the number part for resolution (i.e., counting accuracy), the

exponent for a self-adaptive counter can only be up to 5, whereas

the exponent for AC can be up to 31, with a range 2
26

times larger.

2.2.3 Hash Table, Flow Spread and Heavy Hitters. Hash tables [14,

16] can be used to keep track of the size of each flow. However, if

the number of flows exceeds the number of hash entries (such that

sketches become necessary), hash tables can only keep the large

flows for heavy hitter detection [38]. Sketches for a different task

of measuring per-flow spread [46, 49, 58], i.e., number of distinct
data items in each flow, may also be used for estimating per-flow

size. But their performance is generally much worse [58]. Sketches

for detecting heavy hitters [2, 5, 30] do not perform per-flow size

measurement.

2.3 Motivation
We want to explore a new sketch design that possesses the benefits

from both worlds: the accuracy of the multi-update sketches and

Table 1: Performance comparison of the proposed SSVS sketch and existing solutions. SSVS is the only one that performs single-
update (low processing time for recording) and high-accuracy per-flow size measurement. Layered sketches need additional
processing overhead to update possibly a chain of counters at the upper layers when counters at the bottom layer overflow.
Solutions with bold font are considered as the state of the art.

Group of Solutions Solutions Counters Used Measure Per-flow? Counter Updates per Item Accuracy

Generic sketch structures

CM [11] Regular counters Yes Multi-update Medium

CU [15] Regular counters Yes Multi-update Medium

CS [8] Regular counters Yes Multi-update Medium

RCS [26, 27] Regular counters Yes Single-update Low

Layered sketches

Counter Braids [32] Small-size regular counters Yes Multi-update and recursive update Low

Brick [22] Small-size regular counters No Multi-update and recursive update High

Pyramid Sketch [52] Small-size regular counters Yes Multi-update and recursive update Medium

Counter Tree [9] Small-size regular counters Yes Recursive update Low

Efficient counter designs

AEE [3] Small-size regular counters No Multi-update High

DISCO [21] Small-size counters Yes Multi-update Low

CEDAR [42] Small-size counters Yes Multi-update Medium

ICE-buckets [13] Small-size counters No Multi-update High

Self-adaptive counters [51] Small-size counters Yes Multi-update High

SC/SALSA [4] Small to large counters Yes Multi-update High

AC [39] Small-size counters Yes Multi-update High

Hash tables

Cuckoo filter [16] Regular counters No Single-update High

Tinytable [14] Regular counters No Single-update High

This paper SSVS Small-size variable counters Yes Single-update High

the efficiency of the single-update sketches. For that, we have to

integrate the enabling properties from both multi-update sketches

and single-update sketches in a novel structure that resolves their

incompatibility.

First, to minimize the processing overhead, we prefer a single

update sketch, which means the multi-update sketch structures

and their variants (including the generic sketch structures and the

layered sketches in Table 1) [4, 8, 9, 11, 15, 22, 32, 52] are out of

consideration. The existing single-update sketches, RCS [26, 27]

and its variant RCS-AC [59], have very poor accuracy, as shown

in Figure 1. They map each flow to l counters and record each

data item of the flow by increasing one of the l counters by one.

The expectation of the noise (from other flows) in each counter is

estimated as the average value of all counters. This approach is valid

only if noise is about randomly distributed in all counters, which

requires the value of l to be large (e.g., 50 in [27] and 512 in [59]).

However, because the overall noise level in a flow’s size estimate

increases with l , the large value of l causes the poor accuracy of

RCS-AC. Now the question is how to reduce l . Our single-update
sketch design will use noise cancelation to ensure that each of the

l counters has a noise expectation of zero and l can be any small

value. Moreover, it eliminates the overhead in RCS/RCS-AC to scan

the whole counter array for an estimate of the noise expectation

per counter (as it is zero in our design).

Second, by increasing the number of counters, we can further im-

prove the accuracy of a single-update sketch. With a given amount

of memory, more counters mean fewer bits per counter. We have a

three-way tradeoff to play: number of counters, range, and count-

ing accuracy. The existing work has their limitations in this space

of tradeoff. Some counter designs in Table 1 such as DISCO [21]

and CEDAR [42] achieve large range by sacrificing counting accu-

racy, particularly in the low end of its range. They are suitable for

large flows, but not for small flows or medium flows (depending on

the counter configuration). Other designs are adaptive to ensure

more accurate counting for small flows at cost of limited range [51],

expansion in counter size [4], or processing overhead [13, 39]. To

address these issues, we integrate self-adjusting counters [4] and

active counters [39] in an efficient variable counter structure that

expands the range to very large values, ensures precise counting

up to 2
16
, bounds the relative counting error beyond 2

16
to a small

value, and limits the counter size to 16 bits in the worst case.

3 SINGLE UPDATE SKETCHWITH VARIABLE
COUNTER STRUCTURE (SSVS)

In this section, we propose a new single update sketch, denoted

as SSVS, with a variable counter structure. The performance gap

between our new sketch and the existing single update sketches,

RCS/RCS-AC, is significant, as shown in Figure 1. To achieve such

a performance boost, its design differs from the existing work in

counter structure, sketch design, data recording, and query opera-

tion.

3.1 Variable Counter Structure
Our idea of variable counter structure is motivated from the limita-

tions of the counters used in RCS/RCS-AC. For a range of 2
32
, RCS

will need 32-bit regular counters; observing the byte boundary, RCS-

AC will need 16-bit active counters (ACs), each with 5-bit exponent.

From Figure 1, RCS-AC is more accurate than RCS. The reason is

that it has twice the number of counters. However, active counters

perform probabilistic counting and thus incur counting errors. Can

we create even more counters, nearly twice as many as RCS-AC has

at least initially, yet count precisely until it becomes infeasible with

16 bits per counter? Our insight is that each counter should be made

dynamic, counting precisely up to 16 bits and then switching to

probabilistic counting with progressively increasing error. Because

we do not know beforehand howmany data items each counter will

0 00 1 10 10 10 0 0 1 1 0 0 0

C[0].b[0]=18 C[0].b[1]=-76 C[1].s=4812 C[2].a1=9616 C[3].a2=614400

0 0 01 1 1 10

C

I

I[0]=0 I[1]=1 I[2]=2 I[3]=3

m=4

value value value value exp value exp

0 00 1 10 10 10 0 0 1 1 0 0 00 00 1 10 10 10 0 0 1 1 0 0 00 00 1 10 10 10 0 0 1 1 0 0

sign sign sign signsign

Figure 2: Variable Counter Structure. A 64-bit block of SRAM, divided into 4 intervals of 16 bits each. The interpretation of the
counters in the counter arrayC depends on the values of the indicator array I . In this example, each 16-bit interval has the same
bit value of 00010010110011002. The first bit of each counter is the sign. Since I[0]=0, the first 16 bits of memory are interpreted
as two 8-bit counters, b[0] and b[1]. The value of the first 8-bit counter, with its sign being 0, isC[0].b[0] = 00100102 = 1810. The
value of the second 8-bit counter, with its sign being 1, is C[0].b[1] = −10011002 = −7610. For the second counter we have I[1]=1,
so the second 16-bit interval is a short counter.With the sign being 0, its value isC[1].s = 0010010110011002 = 481210. For the third
counter we have I[2]=2, so we interpret the first bit as the sign, the next 12 bits as the value and the last 3 bits as the exponent.
The value part isC[2].a1.v = 0010010110012 = 60110 and the exponent part isC[2].a1.e = 1002 = 410. Therefore, the counter’s value
is C[2].a1.v · 2C[2].a1.e = 601 · 24 = 9616. For the last counter we have I[3] = 3, so its value part is C[3].a2.v = 00100101102 = 15010

and its exponent part is C[3].a2.e = 011002 = 1210. Therefore, the counter’s value is C[3].a2.v · 2C[3].a2.e = 150 · 212 = 614400.

record, the counters must individually adapt from exact counting

to probabilistic counting on the fly. None of the existing counter

designs, including active counters, can do this well.
1
In comparison,

our variable counter design is structured specifically with such

a goal in mind. Observing the byte boundary, it begins with byte

counters in order to maximize the number of counters; note that the

accuracy of all sketches improves with a larger number of counters.

Each byte counter will overflow into a 16-bit counter, still for exact

counting, which will then overflow into a 16-bit active counter with

3-bit exponent, which will expand to 5-bit exponent upon over-

flow.
2
This design of dynamic adaptation from exact counting to

probabilistic counting progressively in a variable counter structure

has advantage over the existing designs in maximizing the number

of counters and minimizing the counting error at the small end.

SSVS uses an array C ofm words, each of 16 bits or two bytes,
3

and an array I of m indicators, each of 2 bits. I is the indicator

for C , specifying how C should be interpreted, as explained below.

Consider any j ∈ [0,m).

• When I [j] = 0, we treatC[j] as two byte counters, referred to
as C[j].b[0] and C[j].b[1], each of 8 bits. The first bit is the

sign and the remaining 7 bits are the value of the counter.

• When I [j] = 1, we treat C[j] as a short counter of two bytes,

denoted as C[j].s . The first bit is the sign and the remaining

15 bits are the value of the counter.

• When I [j] = 2, we treat C[j] as a small-ranged active counter
of two bytes, denoted as C[j].a1, with its first bit as the sign,

the next (15 − α) bits as the value part, together denoted

1
Paper [47] is a variant of active counter, with a less efficient exponent design. For

example, it uses 1010011111
2
to represent 10102 × 2

5
, where the five trailing ones rep-

resent an exponent of 5. In contrast, our design uses five-bit exponent for a multiplying

factor of 2
0
through 2

31
.

2
Given 16 bits in total, with 2 more bits in exponent, there are two fewer bits in the

value part, which increases probabilistic counting error.

3
A word is typically 32 or 64 bits long. One may refer to 16 bits as a short word, but

we refer to it as word for simplicity.

as C[j].a1.v , and the remaining α bits as the exponent part,

denoted as C[j].a1.e , where α is a small integer parameter,

such as 3 used in our experiments. We abbreviate Active
Counter as AC. With 3 bits of exponent, the range of a small-

ranged AC is (−219, 219). With 12 bits of value, the rounding

error is less than
1

2
11
.

• When I [j] = 3, we treat C[j] as a large-ranged active counter
of two bytes, denoted as C[j].a2, with its first bit as the sign,

the next (15 − β) bits as the value part, denoted as C[j].a2.v ,
and the remaining β bits as the exponent part, denoted as

C[j].a2.e , where β is another integer parameter, such as 5

used in our experiments. Its range is (−241, 241), with its

rounding error less than
1

2
9
.

We will adopt α = 3 and β = 5 in the rest of the paper. These

parameter values cover a broad range, while the user can certainly

change them to other values based on application need.

The array C has a variable counter structure, defined by the

indicator array I , which initially sets all indicators to zero and

evolves as the data items of the flows are recorded. C is initialized

with 2m small byte counters, aligning with our goal of maximizing

the number of counters to enhance accuracy. Each byte counter

counts precisely until overflow. When that happens, we expand

the counting range by merging two adjacent byte counters into a

short counter to continue exact counting. When a short counter

overflows, it becomes a small-ranged active counter and then a

large-ranged active counter, which is controlled by the counter’s

indicator. We illustrate how arrays C and I work with an example

in Figure 2, in which each 16-bit segment has the same bit value,

but the content of C is interpreted differently, depending on I .

3.2 Mapping Flows to Counters
Each flow f is mapped to l counters in C using l hash functions

hi (.), 0 ≤ i < l , where l is a system parameter that controls the

estimation error, which we will analyze later. For a single update

0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1

sign value sign

Before Overflow

0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

sign value

0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

sign value exp

1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

sign value

0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

sign value exp

1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

sign value exp

1 1

After Overflow

(a)

(b)

(c)

Figure 3: Examples illustrating how we handle overflows in C[hmr (f)]: Example (a): The byte counter C[hmr (f)].b[0] is on the
verge of overflowing, with a pending increase. We mergeC[hmr (f)].b[0] andC[hmr (f)].b[1] to create the short counterC[hmr (f)].s.
The resulting value is the sum of the two byte counters plus 1, which equals 127 + 3 + 1 = 131. I [hmr (f)] is updated from 0 to 1.
Example (b): The short counter C[hmr (f)].s = 2

15 − 1 is approaching its overflow point. When faced with a pending increase to
2
15, we convert it into a small-ranged active counter by setting the value part (12 bits) to 2

11 and the exponent part (3 bits) to
4. I [hmr (f)] is accordingly incremented to 2. Example (c): The small-ranged active counterC[hmr (f)].a1 = (212 − 1) × 2

7 is nearing
its overflow threshold. When confronted with a pending increase in the value part to 2

12, we transform it into a large-ranged
active counter by setting the value part (10 bits) to 2

9 and the exponent part (5 bits) to 10. I [hmr (f)] is updated to 3. By following
this approach, we ensure that counter transformations are performed without incurring any errors.

sketch, each data item of flow f will be recorded by one of its l coun-
ters. According to [58] and [46], practically, one may implement l
hash functions from a master hash function H as hi (x) = H (x ⊕ i),
0 ≤ i < l , where ⊕ is the XOR operator.

The hash value of flow f is an integer, denoted as hi (f), 0 ≤

i < l . Let h0i (f) and h
1

i (f) be the the first and second bits of hi (f),

respectively. Let h2+i (f) be the remaining bits. Suppose that the

range of h2+i (f) is larger that the range ofm. We define hmi (f) =

h2+i (f) mod m.

We use hmi (f), 0 ≤ i < l , as an index to map f to a word in

C , i.e., C[hmi (f)], and to an indicator in I , i.e., I [hmi (f)]. We use

I [hmi (f)] to interpret the counter(s) in C[hmi (f)]. If there are two

byte counters in case of I [hmi (f)] = 0, we use h1i (f) to further map

f to one of the two byte counters. The details are given below.

• If I [hmi (f)] = 0, we map f to C[hmi (f)].b[h1i (f)], which is a

byte counter.

• If I [hmi (f)] = 1, 2, or 3, we map f to C[hmi (f)].s ,
C[hmi (f)].a1, or C[hmi (f)].a2, respectively, which are the

same two bytes but interpreted differently.

We haven’t used h0i (f) yet, which is left for the data recording

operation below.

3.3 Recording Data Items
Each data item of a flow will be recorded by one of the l counters
that the flow is mapped to. Which counter to use is randomly

selected, and the counter is either increased or decreased by one,

pseudo-randomly determined based on the flow ID. As the counter

may be shared by other flows (noise), some of those flows will

increase the counter and others will decrease the counter, resulting

in noise cancelation and lowering the residual noise, which may be

positive or negative, with an expectation of zero. Such a technique

was used in CS [8], a multi-update sketch. Below we adopt it in a

single update sketch with a variable counter structure.

At the beginning of each measurement period, all bits inC and I
are set to zeros. When processing the next arrival data item, which

carries a flow ID f , we generate a random number r in the range of

[0, l). We compute the hash hr (f) = H (f ⊕ r), compute the index

hmr (f) and record the data item in the counterC[hmr (f)]. The exact
recording operation is based on the value of h0r (f). If h

0

r (f) = 0, we

increase C[hmr (f)] by one; if h0r (f) = 1, we decrease C[hmr (f)] by
one.

The increase (or decrease) of an AC is different from a byte/short

counter. The AC increase (or decrease) is done probabilisti-

cally: Depending on the value of h0r (f), for a small-ranged AC,

C[hmr (f)].a1.v is increased (or decreased) by one with probability

1

2
C [hmr (f)].a1.e ; for a large-ranged AC,C[h

m
r (f)].a2.v is increased (or

decreased) by one with probability
1

2
C [hmr (f)].a2.e .

IfC[hmr (f)] is a byte counter and it overflows, we need to expand
its size to a short counter. If C[hmr (f)] is a short counter and it

overflows, we need to turn it into a small-ranged AC. When that

counter overflows, we turn it into a large-ranged AC. We do not

expect a large-ranged AC to overflow, since its range is (−241, 241).

But if it does, it is easy to redefine the size of its exponent part

from 5 bits, to 6 bits or more. Below we explain how exactly to

handle the problem that a pending increase (or decrease) would

cause C[hmr (f)] to overflow.

Algorithm 1 Data-Item Recording

Input: flow ID f , a master hash function H , counter array C and

indicator array I
Output: single counter update to C and I

1: r = random.nextInt(0, l-1);
2: hr (f) = H (f ⊕ r);
3: hmr (f) = h+2r (f) mod m;

4: if I [hmr (f)] = 0 then
5: run Algorithm 2 Update byte counter;

6: else if I [hmr (f)] = 1 then
7: run Algorithm 3 Update short counter;

8: else if I [hmr (f)] = 2 then
9: if random.nextInt(0, 2C[hmr (f)].a1.e − 1) = 0 then
10: run Algorithm 4 Update small-ranged AC;

11: else
12: if random.nextInt(0, 2C[hmr (f)].a2.e − 1) = 0 then
13: run Algorithm 5 Update large-ranged AC;

return updated C and I ;

Algorithm 2 Update byte counter

Input: bit h0r (f), bit h1r (f), counter C[hmr (f)], and indicator

I [hmr (f)]
Output: updated counter C[hmr (f)] and indicator I [hmr (f)]

1: if h0r (f) = 0 then
2: if C[hmr (f)].b[h1r (f)] = 127 then
3: I [hmr (f)] = I [hmr (f)] + 1;
4: C[hmr (f)].s = C[hmr (f)].b[0] +C[hmr (f)].b[1];
5: C[hmr (f)].s = C[hmr (f)].s + 1;
6: else
7: C[hmr (f)].b[h1r (f)] = C[h

m
r (f)].b[h1r (f)] + 1;

8: else
9: if C[hmr (f)].b[h1r (f)] = −127 then
10: I [hmr (f)] = I [hmr (f)] + 1;
11: C[hmr (f)].s = C[hmr (f)].b[0] +C[hmr (f)].b[1];
12: C[hmr (f)].s = C[hmr (f)].s − 1;

13: else
14: C[hmr (f)].b[h1r (f)] = C[h

m
r (f)].b[h1r (f)] − 1;

return updated C[hmr (f)] and I [hmr (f)];

• Case 0: I [hmr (f)] = 0.

C[hmr (f)] is eitherC[hmr (f)].b[0] orC[hmr (f)].b[1]. We need

to combine the two byte counters into a short counter.

We set I [hmr (f)] = 1, add the values of C[hmr (f)].b[0]
and C[hmr (f)].b[1] to C[hmr (f)].s , i.e. C[hmr (f)].s =

C[hmr (f)].b[0] + C[hmr (f)].b[1]. Then, we increase (or de-

crease) C[hmr (f)].s by one, based on the value of h0r (f). We

give an example for this case in Figure 3 (a).

• Case 1: I [hmr (f)] = 1.

We need to turn a short counter into a small-ranged AC.

We set I [hmr (f)] = 2 and turn C[hmr (f)].s into C[hmr (f)].a1
by right-shifting the counter by 4 bits and then setting

C[hmr (f)].a1.e (i.e., the right-most 3 bits) to 4. Then, we in-

crease (or decrease) C[hmr (f)].a1 by one, based on the value

of h0r (f). We give an example for this case in Figure 3 (b).

• Case 2: I [hmr (f)] = 2.

We need to turn a small-ranged AC to a large-ranged AC.

We set I [hmr (f)] = 3 and turnC[hmr (f)].a1 intoC[hmr (f)].a2
by right-shifting the counter by 3 bits and then setting

C[hmr (f)].a2.e (i.e., the right-most 5 bits) to 10. Then, we in-

crease (or decrease) C[hmr (f)].a2 by one, based on the value

of h0r (f). We give an example for this case in Figure 3 (c).

• Case 3: I [hmr (f)] = 3.

If a large-ranged AC overflows, it means that the exponent

part requires more than 5 bits. We have to increase the size

of the exponent part for all large-ranged ACs, which may

be done by right-shifting the value part for one bit and thus

allowing the expansion of the exponent part by one bit.

The detailed recording operations are given in Algorithm 1. The

update operations of byte counters are given in Algorithm 2, and

of other counters are provided in Github [36]. For each arrival

data item, at most one counter in C will be updated. Because an

active counter is updated probabilistically, there is a chance that

no counter update is actually needed. Occasionally, we may also

need to update an indicator, but that is rare.

3.4 Size Query and SSVS-1
To answer a query for the size of flow f , we retrieve the flow’s l
indicators, I [hmi (f)], 0 ≤ i < l , and l counters, C[hmi (f)]. A simple

method is to estimate the flow size n̂f as

n̂f =
∑l−1

i=0
δC[hmi (f)], (1)

where δ = 1 when h0i (f) = 0 and δ = −1 when h0i (f) = 1.

Each of the l counters carries noise from other flows. But those

noises come randomly as positive or negative, and they statistically

cancel out each other. Let nf be the true size of flow f . We have

the following theorem. Its proof can be found in the supplementary

material and in GitHub [36].

Theorem 1. For any flow f , the expectation and variance of n̂f
produced by SSVS-1 follow:

E(n̂f)

{
= nf , if ∀0 ≤ i < l, I [hmi (f)] ∈ {0, 1};

∈ [(1 − 0.01)nf , (1 + 0.01)nf], otherwise;
(2)

Var(n̂f) ≤ 2.0402l2(n/m − n/(2m2)). (3)

We refer to our sketch design, the recording operations and the

query method (1) together as SSVS-1.

3.5 Modified Size Estimation Method and
SSVS-2

From Theorem 3, the standard error in n̂f is minimized when l = 1,

which is confirmed by our experiments discussed later. As explained

in Section 2.3, a small value of l will help SSVS-1 be more accurate

than RCS/RCS-AC, which is also confirmed by our experiments. It

is well known that network traffic traces follow power-law distri-

butions [1, 35, 40], with most flows being small or medium, and

very few flows being very large. For such data sets, as each flow is

split among few counters (small l), the sizes of large flows are con-
centrated in a small number of counters, causing big noise (called

noise outlier) to other flows that share these counters. To further

improve accuracy, we need a way to block out the noise outliers.

We attempt to exclude the noise outliers from the estimation for-

mula by establishing a so-called noise interval and only the counters
within the noise interval are used for flow size computation.

Before any query, we generate a large set F of fake flow IDs

(corresponding to flows of size zero). We use (1) to estimate their

flow sizes, which are in fact the residual noises after cancellation.

Letw be the average residual noise, i.e.,w =
∑
f ′∈F |n̂f |
|F | , which is a

measure of overall residual noise level.

Given a query on flow f , we sort its l counters, C[hmi (f)], 0 ≤

i < l , and find the closest two counters, denoted as c and c ′ with
c ≤ c ′, which tend to locate at the center of the distribution. We

define a noise interval for flow f as [c − w
k , c

′ + w
k], where k is a

parameter that controls the width of the interval. We will study

this parameter experimentally. We abbreviate the noise interval as

±w
k . The purpose of noise interval is to keep out the noise outliers.

We estimate the size of flow f based on the subset Nf of counters

that fall within the interval.

Nf = {δC[hmi (f)] | c −
w

k
≤ δC[hmi (f)] ≤ c ′ +

w

k
, 0 ≤ i < l}

n̂∗f =
l

|Nf |

∑
x ∈Nf

x,
(4)

where δ = 1 when h0i (f) = 0 and δ = −1 when h0i (f) = 1.

We refer to the version of our sketch using (4) as SSVS-2. The

only difference between SSVS-1 and SSVS-2 is their estimation

formulas. We know that SSVS-1 is optimized at l = 1. That is not

the case for SSVS-2. In fact, because the noise interval contains at

least two counters, SSVS-1 and SSVS-2 will be identical if they use

the same number of counters per flow at l = 1 or 2. Our experiments

will show that SSVS-2 with l = 4 consistently outperforms SSVS-1

with l = 1.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setting
We have implemented the following sketches for per-flow size mea-

surement: (1) the proposed SSVS-1 and SSVS-2, which have the

same recording operations but different query methods; (2) ran-

domized counter sharing (RCS) [27], which is the best single update

sketch in terms of low processing overhead (note that its Counter

Tree variant [9] sometimes has to update multiple counters in a

hierarchical structure and thus has higher overhead); (3) Random-

ized Counter Sharing with active counters (RCS-AC) [59], which

is also a single update sketch; (4) a group of widely used multi-

update sketches that employ regular counters as building blocks,

including CountMin (CM) [11], Count Sketch (CS) [8], and Counter

Update (CU) [15]; (5) their variants that use self-adjusting coun-

ters [4], including CountMin with self-adjusting counters (CM-SC),

Count Sketch with self-adjusting counter (CS-SC), and Counter Up-

date with self-adjusting counter (CU-SC); (6) their variants that use

active counters [39], including CountMin with active counter (CM-

AC), Count Sketchwith active counter (CS-AC), and Counter Update

with active counter (CU-AC); (7) their variants that use CEDAR

counters [42], including CountMin with CEDAR (CM-CE), Count

Sketch with CEDAR (CS-CE), and Counter Update with CEDAR

(CU-CE); and (8) their variants that use self-adaptive counters [51],

including CountMin with self-adaptive counter (CM-SA), Count

Sketch with self-adaptive counter (CS-SA), and Counter Update

with self-adaptive counter (CU-SA). Layered sketches have higher

processing overhead due to counter updates across layers, and it is

shown in [4] that CM-SC also outperforms Pyramid sketch in accu-

racy and shown in [51] that CM-SA, CS-SA and SU-SA outperform

Counter Tree in accuracy.

The self-adjusting counters used in CM-SC, CS-SC andCU-SC are

up to 32 bits, with amaximum range of 2
32
. The active counters used

in CM-AC, CS-AC and CU-AC are 16 bits with the same structure

as our large-ranged ACs, with a maximum range of 2
41
. To have a

range of up to 2
32
, we allocate each CEDAR counter 12 bits, which

is recommended in its original experiments. Self-adaptive counters

have two versions: static and dynamic. We use the dynamic one,

because it is more accurate, as demonstrated in the original paper.

Each self-adaptive counter is 16 bits, which is the same parameter

setting as the original paper. We set l = 50 for RCS [26, 27], l = 512

for RCS-AC [59], as in the original papers, andd = 4 for CM, CS, CU,

CM-SC, CS-SC, CU-SC, CM-AC, CS-AC and CU-AC. See Section 2.2

for their definitions. For SSVS-1 and SSVS-2, we will experimentally

study how they react to different l values.

Table 2: Statistics of the traffic trace fromCAIDAused in our
experiments

Flow size range Avg flow Size No. of flows

[1,10] 3.1 355580

[11,100] 25.7 68057

[101,1000] 308.7 12034

[1001,10000] 2805.2 2218

≥ 10001 19370.7 274

Table 3: Statistics of the web data set in our experiments

Flow size range Avg flow Size No. of flows

[1,10] 1.8 913742

[11,100] 30.1 65053

[101,1000] 315.9 14393

[1001,10000] 3072.7 3860

≥ 10001 22209.3 751

Our evaluation uses two sets of performance metrics, one set

for estimation accuracy and the other set for recording overhead.

Estimation accuracy is evaluated by the average absolute error and

the average relative error. Consider a set F of flows. ∀f ∈ F , let n̂f
and nf be the flow size estimate and the true flow size, respectively.

The average absolute error is defined as

∑
f ∈F (|n̂f − nf |)/|F |. The

average relative error is defined as

∑
f ∈F

|n̂f −nf |
nf

/|F |. The absolute

error is more useful for small flows, whereas the relative error is

more useful for large flows. For example, we consider n̂f = 5 to be

a good estimation for nf = 1 because it is off only by 4 although

the relative error is 400%. We consider n̂f = 100200 to be a good

estimation for nf = 100000 although the absolute error 200 is much

worse, but the relative error is only 0.2%.

Table 4: Average absolute error of SSVS-1 with respect to l ,
under 1Mbit memory

Flow size range l = 1 l = 2 l = 4 l = 8 l = 16 l = 32

[1,10] 132.6 237.2 380.2 534.4 624.8 667.0

[11,100] 134.8 242.9 389.8 536.4 637.7 670.8

[101,1000] 157.2 311.4 470.4 627.4 753.4 794.9

[1001,10000] 224.0 393.9 675.8 963.9 1126.5 1202.7

≥ 10001 217.3 639.5 1021.7 1055.8 1186.6 1418.9

Table 5: Average absolute error of SSVS-2 with respect to l ,
under 1Mbit memory

Flow size range l = 1 l = 2 l = 4 l = 8 l = 16 l = 32

[1,10] 132.6 237.2 60.8 80.2 142.7 195.9

[11,100] 134.8 242.9 68.5 90.3 153.6 211.9

[101,1000] 157.2 311.4 108.8 130.0 229.9 359.5

[1001,10000] 224.0 393.9 188.2 319.7 510.9 854.1

≥ 10001 217.3 639.5 241.8 420.1 833.7 1865.5

Recording overhead is evaluated by the average processing time

of data item recording, the recording throughput in millions of data

items per second, the number of memory accesses per data item, the

number of hashes per data item, and the number of counter updates

per data item during recording. The latter three metrics can be

obtained from the algorithm designs. The average processing time

will be obtained through experiments. The recording throughput is

the inverse of the average processing time. An average processing

time of 100 ns corresponds to a recording throughput of 10 thousand

packets per second.

We use three data sets: (1) A real Internet traffic trace down-

loaded from CAIDA [43]. It consists of 18,215,144 packets (data

items). We designate the source-destination IP address pair as the

flow ID and there are 438,163 different flows. To record the size

of each flow, we could assign a 32-bit regular counter per flow,

which would require 42Mb memory without considering the in-

dexing overhead. In contrast, the sketches used in our evaluation

only require 1Mb memory. (2) A collection of web html documents

downloaded from [33]. We set the flow ID to be the web document’s

unique number in the database. Each data item is a URL reference

from other documents to the flow ID (i.e. a given document). There

are 997,800 flows and 36,680,934 data items. (3) We generate seven

synthetic data sets, each of them following the power-law (Zipf)

distribution [37] with different degrees of skewness. Each synthetic

data set contains 32 million items and a varying number of flows

depending on the skewness. We gradually increase the skewness

from 0.0 to 1.5. As the skewness increases, there will be a fewer

number of flows that are larger. Beyond 1.5, the number of flows

becomes too small for sketches to be useful. With too few flows, we

can simply use a hash table and assign each flow a counter, instead

of using a sketch.

To show the distribution of the data sets, we segregate the flows

into five size ranges: [1-10], [11-100], [101-1000], [1001-10000] and

larger than 10001. Tables 2 and 3 show the number of flows and the

average flow size for each size range for the CAIDA data set and the

web data set, respectively. Our experimental results in estimation

accuracy will also be given for each range separately.

The experiments are performed on a desktop computer equipped

with an AMD 5950X CPU with 16 cores at 3.4 GHz and 64 GB of

RAM. We have uploaded our implementation on github [45].

4.2 Comparison between SSVS-1 and SSVS-2
We compare SSVS-1 and SSVS-2 on the CAIDA data set in terms

of accuracy by varying the value of l from 1, 2, 4, 8, 16 to 32. The

memory allocated is 1Mbit. The noise level is set to ±w/4. The ex-

periment first records the traffic trace, then queries the size of each

flow, and finally measures the errors in the flow size estimations.

Table 4 presents the average absolute errors in size estimations

by SSVS-1 for flows in different ranges (rows) under different l
values. It shows that the errors are minimized at l = 1, which is

consistent with Theorem 1. Table 5 presents the average absolute

errors by SSVS-2. It shows a different behavior. The errors in SSVS-2

decrease at first as l increases, bottom at l = 4, and then increase as

l further increases. The value of l has direct impact on two factors

that contribute to the errors. First, as l increases, every flow f is

split into more pieces (each piece recorded in a counter that f is

mapped to). It is therefore less likely to create noise outliers, which

helps reduce the estimation error. Second, each counter carries a

certain amount of noise from other flows. The more counters that

f uses for its size estimation, the more aggregate noise it will have

in its estimation. For SSVS-1, the second factor dominates, but for

SSVS-2, it’s a balancing game, with the first factor winning for small

l values and the second factor dominating for larger l values.
Comparing the best results in Table 4, i.e., the column of l = 1,

with the best results in Table 5, i.e., the column of l = 4, SSVS-

2 clearly outperforms SSVS-1 in estimation accuracy. While the

average absolute error increases with flow size, as we show in

Table 9, the average relative error actually decreases rapidly with

flow size, suggesting good accuracy for large flows as well.

Next we evaluate the impact of the noise interval on estimation

accuracy of SSVS-2. We vary the noise interval from ±2w , ±w ,

±w
2
, ±w

4
, to ±w

8
. Table 10 shows that the errors first decrease as

the noise interval decreases, bottom at ±w
4
, and then increase as

the noise interval further increases. This is the aggregate result of

two factors. With a smaller noise interval, noise outliers are less

likely to be included in the interval for size estimation, which helps

improve accuracy. But in the meantime there are fewer counters

in the interval and thus fewer data from the flow under query are

included in the estimation, which reduces accuracy.

4.3 Accuracy Comparison between SSVS-2 and
Prior Work

We now compare our best sketch SSVS-2 with the prior work in

terms of estimation accuracy. For SSVS-2, l = 4 and the noise

interval is set to±w/4. The parameter settings for the prior work are

discussed in Section 4.1. Table 6 presents the absolute errors of the

size estimations by various sketches in different flow size ranges.We

do not include the results for CM, CS and CU because they perform

worst than their variants in the table that use efficient counter

designs. The most relevant work is the single update sketches,

RCS and RCS-AC, which were designed to minimize per-packet

processing overhead, but have much lower accuracy, compared to

multi-update sketches. SSVS-2 achieves far better accuracy than

Table 6: Comparison of various sketches on average absolute error, on the CAIDA data set, under 1Mbit memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
[1,10] 165.8 105.4 81.6 166.3 91.9 108.0 112.3 65.2 61.5 208.8 92.3 107.7 731.4 626.2 60.8
[11,100] 172.9 113.4 70.2 173.1 101.5 93.1 111.9 75.0 47.0 209.0 103.7 93.5 751.3 638.3 68.5
[101,1000] 209.2 161.5 43.5 209.7 143.8 27.1 105.6 107.4 105.2 212.3 147.4 27.46 907.7 754.4 108.8
[1001,10000] 206.5 206.1 14.2 205.8 190.4 782.8 186.8 203.7 1371.4 210.8 172.2 12.1 1405.0 1013.8 188.2
≥ 10001 265.2 376.2 14.3 231.4 322.7 9285.0 1693.9 873.0 10215.0 192.4 185.1 2204.3 1560.9 1036.1 241.8

Table 7: Comparison of various sketches on average relative error, on the CAIDA data set, under 1Mbit memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
[1,10] 95.7 61.1 47.3 101.4 52.6 62.9 64.9 37.3 36.0 122.6 52.7 62.8 421.3 364.5 35.0
[11,100] 9.3 6.0 4.0 9.6 5.4 5.3 6.12 4.0 2.81 11.4 5.5 5.4 40.4 34.4 3.6
[101,1000] 0.97 0.72 0.24 0.82 0.64 0.16 0.50 0.47 0.28 1.00 0.65 0.16 4.0 3.4 0.42
[1001,10000] 0.10 0.10 0.0090 0.10 0.09 0.20 0.07 0.087 0.47 0.11 0.084 0.0069 0.71 0.51 0.096
≥ 10001 0.013 0.026 0.00047 0.017 0.017 0.46 0.083 0.043 0.51 0.012 0.010 0.064 0.085 0.062 0.016

Table 8: Comparison of various sketches on average absolute error, on the CAIDA data set, under 256Kbits memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
[1,10] 1565.3 478.5 937.0 1330.3 438.3 776.2 878.0 324.6 467.9 1327.5 444.5 791.1 1827.7 1335.0 465.1
[11,100] 1569.0 488.7 931.0 1332.7 439.4 772.7 877.4 331.3 450.2 1324.2 454.4 773.0 1843.6 1352.1 478.2
[101,1000] 1572.1 494.1 919.4 1331.0 450.0 757.8 876.9 439.1 260.8 1319.8 565.4 564.7 2009.5 1341.9 560.4
[1001,10000] 1581.4 586.3 704.5 1320.7 550.4 551.6 799.8 616.7 1197.6 1336.9 761.4 124.6 2749.4 1490.4 867.9

≥10001 1584.9 1009.7 163.4 1327.5 793.8 715.2 1236.1 1272.7 10098.9 1320.0 849.2 2214.8 3971.7 2139.4 915.2

Table 9: Average relative error of SSVS-2 with respect to l ,
under 1Mbit of memory

Flow size range l = 1 l = 2 l = 4 l = 8 l = 16 l = 32

[1,10] 77.0 136.2 35.0 45.8 81.6 111.7

[11,100] 7.4 13.1 3.6 4.7 8.1 11.2

[101,1000] 0.72 1.5 0.43 0.57 1.0 1.5

[1001,10000] 0.11 0.20 0.097 0.15 0.22 0.37

≥ 10001 0.013 0.037 0.015 0.024 0.048 0.11

Table 10: Average absolute error of SSVS-2 with respect to
noise interval, under 1Mbit memory

Flow size range ±2w ±w ±w/2 ±w/4 ±w/8 ±w/16

[1,10] 77.9 65.2 61.6 60.8 61.7 62.2

[11,100] 86.7 74.2 68.8 68.5 69.6 70.1

[101,1000] 132.3 115.4 112.4 108.8 109.8 108.5

[1001,10000] 185.9 187.6 177.7 188.2 196.6 190.5

≥ 10001 237.9 239.3 257.2 241.8 267.4 232.2

RCS and RCS-AC. Its absolute errors are even smaller than most

multi-update sketches except for CU-SC and CS-CE. Comparing

with CU-SC, SSVS-2 has lower errors for small flows and comparing

with CS-CE, SSVS-2 has lower errors for large flows. Although its

errors are higher than CU-SC for large flows, if we consider the

average relative errors in Table 7, which are more relevant for large

flows, they remain small (in the last two rows). Figure 1 shows that

our new sketch (SSVS-2) has a smaller average (absolute) error than

CU-SC over all flows; that is because there are many more small

flows than large ones.

From Table 6, the average absolute errors of RCS-AC are 626.2

on flows of size [1,10] and 1036.1 on flows of size ≥ 10001. When it

comes to SSVS-2, the average absolute errors are 60.8 on flows of

size [1,10] and 241.8 on flows of size ≥ 10001. The errors of SSVS-2

are less than one tenth and one fourth of RCS-AC’s, respectively.

The advantage of SSVS-2 is more pronounced for small flows. The

reason is due to the variable counter structure in Section 3.1. Recall

that each counter in SSVS counts precisely until its 16 bits overflow.

After that, it counts probabilistically. Because the counters of a small

flow are likely to have small values, SSVS records the flow’s packets

more precisely than RCS-AC. As the counters of a large flow are

likely to overflow into probabilistic counting, SSVS records packets

less precisely than its small-flow case, but still more precisely than

RCS-AC because it counts precisely up to ±215 and then counts

probabilistically, whereas RCS-AC always counts probabilistically.

We continue comparing SSVS-2 to the prior work by varying the

amount of memory allocated to the sketches from 256Kb, 512Kb,

to 2Mb. The average absolute errors are presented in Tables 8, 11,

and 12. When the memory is very tight, such as 256Kb in Table 8,

CS-CE performs the best for small flows, CU-SC performs the best

for large flows, while SSVS-2 is in between, whose errors are larger

than CS-CE but smaller than CU-SC for small flows, while being

smaller than CS-CE but larger than CU-SC for large flows. As we

increase the memory, the performance of CU-SC and SSVS-2 is

improved faster and outperforms CS-CE. Note that CU-SC and

CS-CE are multi-update sketches that are optimized for accuracy,

whereas SSVS-2 is designed to perform well both in accuracy and

in overhead. Its overhead is much smaller than those of CU-SC and

CS-CE, as we will show next.

4.4 Overhead Comparison between SSVS-2 and
Prior Work

We compare SSVS-2 with the prior work on the CAIDA data set in

terms of per-packet processing overheadwith the same experiments

Table 11: Comparison of various sketches on average absolute error, on the CAIDA data set, under 512Kbits memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
[1,10] 584.0 227.2 351.2 491.5 205.6 297.6 318.6 147.7 173.0 491.0 204.4 298.6 1296.5 936.2 183.9
[11,100] 583.8 233.8 347.7 493.3 208.4 293.9 318.7 157.2 156.6 490.9 217.2 282.4 1300.1 946.5 194.2
[101,1000] 584.7 237.0 337.3 492.7 220.9 280.9 313.2 218.0 99.6 491.0 300.0 139.3 1423.8 957.4 261.4
[1001,10000] 580.6 336.0 193.1 491.7 298.8 139.5 304.4 342.4 1326.1 496.3 403.5 37.5 2161.0 1056.3 404.7

≥10001 588.8 514.2 47.9 478.8 421.4 756.3 1372.0 1030.3 10206.4 491.8 330.5 2215.7 2479.6 1639.5 473.4

Table 12: Comparison of various sketches on average absolute error, on the CAIDA data set, under 2Mbits memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
[1,10] 37.1 42.0 21.8 60.8 39.2 37.6 38.1 27.4 20.8 60.7 39.4 37.2 648.4 472.5 19.9
[11,100] 37.0 44.3 18.8 60.7 41.0 34.4 37.7 33.8 12.7 60.7 47.8 26.3 667.3 476.9 25.6
[101,1000] 37.9 49.0 13.8 60.6 47.0 26.2 36.9 53.8 122.0 61.0 66.2 6.0 799.2 480.1 46.2
[1001,10000] 71.7 74.4 10.2 60.7 65.2 6.1 198.1 150.6 1390.5 61.5 79.6 3.8 1208.1 603.2 105.8

≥10001 71.9 88.5 4.3 68.5 90.1 795.2 1633.4 877.3 10250.3 84.5 113.8 2214.0 1300.0 913.6 189.4

Table 13: Comparison of various sketches on per-packet processing overhead, on the CAIDA data set, under 1Mbit memory
and l = 4

Per-packet overhead CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
processing time (ns) 266 268 728 410 409 765 278 289 368 388 399 1937 71 121 73
memory accesses O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(1) O(1) O(1)

hashes l l l l l l l l l l l l 1 1 1
counter updates l l O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) 1 ≤ 1 ≤ 1

Table 14: Comparison of various sketches on throughput in million packets per second (Mpps), on the CAIDA data set, under
1Mbit memory and l = 4

Sketch CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
Throughput (Mpps) 3.76 3.73 1.37 2.44 2.44 1.31 3.59 3.46 2.71 2.57 2.51 0.52 14.08 8.26 13.70

as in the previous subsection. Table 13 presents the average per-

packet processing times of various sketches; see the second row. The

single update sketches, RCS and SSVS-2, have similar processing

times, which are less than the processing time of RCS-AC, which

are in turn far less than the times of the multi-update sketches. In

particular, when we compare SSVS-2 with CS-CE and CU-SC, their

processing times are 73ns, 289ns and 728ns, respectively, almost ten-

fold difference between SSVS-2 and CU-SC. The reason for CU-SC,

the best in overall accuracy among the prior work, to have much

larger processing time is because it has to decode l self-adjusting
counters before finding the smallest counter(s) for update. Generally

speaking, the overhead comparison between a multi-update sketch

and a single update sketch is O(l) v.s. O(1) in terms of number of

memory accesses, number of hash computations, and number of

counter updates. One interesting observation is that SSVS-2 incurs

less than one counter update per packet on average. That is because

its active counters are updated probabilistically; see Section 3.3

for details. Table 14 presents the throughput that each sketch can

handle in millions of packets per second under our experimental

setting. The throughput of SSVS-2 is about 10 times that of CU-SC.

Combining the experimental results on the accuracy of all

sketches presented in Section 4.3, we provide a summary of the

performance of SSVS-2 and the prior work in Figure 1. In this anal-

ysis, we use the average absolute error of all flows as the overall

accuracy metric, represented by the x-axis. Additionally, we use the
per-packet processing time as the metric for recording overhead,

represented by the y-axis. For consistency, we set the memory allo-

cation to 1Mb. Figure 1 demonstrates that SSVS-2 achieves slightly

better overall accuracy compared to the most accurate existing

method, while significantly reducing recording overhead. Further-

more, in comparison to themost lightweight existing sketch, SSVS-2

incurs similar recording overhead, while improving measurement

accuracy multi-fold.

4.5 Comparison between SSVS-2 and Prior
Work on Web Data Set

We present our evaluation results on the web data set. Table 15

compares SSVS-2 with the prior work in terms of the average abso-

lute error under memory 1Mb. Table 16 gives the average relative

errors. We can draw the same conclusion as those from the CAIDA

data set: CU-SC performs the best for large flows, CS-CE performs

the best for small flows, and SSVS-2 performs in between. SSVS-2

is much more accurate than the existing single update sketches,

that is, RCS and RCS-AC. Table 17 compares SSVS-2 with the prior

work in terms of processing time per data item and throughput in

Mpps. Again, the overhead of SSVS-2 is similar to RCS and much

better than multi-update sketches, an order of magnitude better

than CU-SC.

Table 15: Comparison of various sketches on average absolute error, on the web data set, under 1Mbit memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
[1,10] 290.7 234.0 146.4 262.1 189.9 163.7 166.3 128.3 94.9 262.7 190.4 163.6 1475.6 1064.4 135.7
[11,100] 299.3 244.8 132.1 261.5 200.2 143.1 166.4 142.1 74.8 263.8 200.0 144.5 1494.4 1075.4 149.7
[101,1000] 319.8 317.2 81.2 263.4 265.2 44.3 160.9 186.2 99.0 261.5 265.0 46.6 1715.1 1202.6 205.0
[1001,10000] 319.7 403.4 6.7 250.0 365.6 882.2 227.8 328.1 1472.5 263.4 348.2 1.27 2563.9 1735.8 300.6
≥ 10001 352.3 1112.4 0.25 401.7 527.8 10450.8 1709.0 1088.6 11451.3 257.2 364.7 3340.4 2975.4 1970.2 455.3

Table 16: Comparison of various sketches on average relative error, on the web data set, under 1Mbit memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
[1,10] 232.8 187.3 117.6 210.1 152.1 131.5 133.1 102.6 76.4 210.7 151.8 131.4 1181.7 852.6 108.6
[11,100] 14.1 11.4 6.5 12.5 9.4 7.1 7.96 6.62 3.8 12.6 9.6 7.2 71.2 50.9 7.1
[101,1000] 1.5 1.4 0.47 1.2 1.1 0.28 0.78 0.83 0.26 1.2 1.2 0.30 7.7 5.4 0.89
[1001,10000] 0.15 0.19 0.0045 0.12 0.17 0.20 0.08 0.14 0.46 0.13 0.17 0.00094 1.1 0.80 0.14
≥ 10001 0.019 0.044 0.000020 0.019 0.026 0.45 0.07 0.051 0.51 0.014 0.023 0.081 0.16 0.11 0.025

Table 17: Comparison of various sketches on throughput in million packets per second (Mpps), on the web data set, under
1Mbit memory and l = 4

Per-packet overhead CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
processing time (ns) 280 281 756 428 431 796 289 299 386 402 414 2109 75 128 77
Throughput (Mpps) 3.57 3.56 1.32 2.33 2.32 1.25 3.46 3.34 2.59 2.48 2.41 0.47 13.33 7.81 12.90

Table 18: Comparison of various sketches on average absolute error of all flows, on the Zipf data set with varying skewness,
under 1Mbit memory and l = 4.

Skewness CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2
0 1813.4 108.1 904.6 1590.0 105.5 799.7 1127.4 92.9 566.2 1591.6 104.8 800.0 164.1 210.3 116.1

0.25 1792.7 112.2 900.6 1571.4 108.5 797.1 1112.2 96.2 562.7 1574.0 108.5 797.0 168.0 211.7 120.7
0.50 1661.2 134.7 861.8 1451.1 127.0 763.0 1021.3 110.1 530.6 1450.9 127.4 764.2 234.9 232.2 142.5
0.75 1251.5 159.8 669.9 1086.7 147.3 599.3 754.0 121.2 409.4 1086.1 147.0 596.5 1096.0 788.2 156.1
1 549.3 131.0 292.6 471.9 113.5 278.0 321.2 88.0 193.2 480.2 121.9 275.5 5924.2 4657.3 93.2

1.25 59.6 53.5 26.5 91.0 44.1 87.4 62.4 34.2 72.3 130.4 84.6 97.5 15403.1 13116.2 24.2
1.5 3.6 15.4 1.6 16.9 15.8 150.4 33.7 19.3 155.9 217.2 219.5 226.7 23516.7 21199.8 7.4

4.6 Comparison between SSVS-2 and Prior
Work on the Zipf Data Set

Finally, we present our evaluation results on the synthetic Zipf

dataset under memory 1Mb.We use the average absolute error of all

flows as the accuracymetric. The results are shown in Table 18. Both

SSVS-2 and CS-CE consistently achieve higher accuracy than others.

CU-SC only achieves superior accuracy when the skewness of the

dataset is very large (greater than 1.25). This discrepancy arises due

to CU’s positively biased estimation, and it works better for large

flows. When the skewness increases, there are fewer larger flows.

RCS and RCS-AC exhibit diminishing accuracy as the skewness

level increases. As explained in Section 2.3, this behavior can be

attributed to their utilization of large l values. In particular, the

impact of larger flows corrupting a greater number of counters is

amplified when confronted with higher levels of skewness. As we

have explained earlier, when the skewness is beyond 1.5, there are

so few flows that sketches no longer make sense, because we can

use a small hash table.

5 CONCLUSION
This paper designs an accurate and fast sketch called SSVS for

per-flow size measurement. The design of SSVS contains several

novel components: (1) a new variable counter, (2) a recording oper-

ation that requires only one hash and at most one counter update

for recording each packet, which is key in both noise cancellation

(i.e. accuracy) and efficiency, and (3) a query method, based on

fine-tuned noise intervals, which blocks out counters that are heav-

ily impacted by noise. Compared to the most accurate sketches,

i.e., multi-update sketches, SSVS reduces the recording overhead

significantly, while maintaining overall comparable measurement

accuracy. Compared to the most lightweight sketches, i.e., single-

update sketches, SSVS is much more accurate and incurs similar

recording overhead. The experimental results demonstrate that the

proposed sketch achieves both high measurement accuracy and

low recording overhead simultaneously.

ACKNOWLEDGMENTS
This work is supported in part by National Science Foundation

under grants CNS 1909077 and CNS-2312676.

REFERENCES
[1] Lada A Adamic and Bernardo A Huberman. 2000. Power-law Distribution of the

World Wide Web. science 287, 5461 (2000), 2115–2115.
[2] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau Feibish, Danny Raz,

and Minlan Yu. 2020. Routing Oblivious Measurement Analytics. In 2020 IFIP
Networking Conference (Networking). IEEE, 449–457.

[3] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2020.

Faster and More Accurate Measurement Through Additive-error Counters. In

IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 1251–
1260.

[4] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2021.

SALSA: Self-adjusting Lean Streaming Analytics. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 864–875.

[5] Ran Ben-Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, Bilal Tayh, and

Danny Raz. 2021. Routing-oblivious Network-wide Measurements. IEEE/ACM
Transactions on Networking 29, 6 (2021), 2386–2398.

[6] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli, and ErezWaisbard.

2017. Constant Time Updates in Hierarchical Heavy Hitters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. 127–140.

[7] Martin Breunig, Patrick Erik Bradley, Markus Jahn, Paul Kuper, Nima Mazroob,

Norbert Rosch, Mulhim Al-Doori, Emmanuel Stefanakis, and Mojgan Jadidi. 2020.

Geospatial data management research: Progress and Future Directions. ISPRS
International Journal of Geo-Information 9, 2 (2020), 95.

[8] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent

Items in Data Streams. In International Colloquium on Automata, Languages, and
Programming. Springer, 693–703.

[9] Min Chen, Shigang Chen, and Zhiping Cai. 2016. Counter Tree: A Scalable

Counter Architecture for Per-flow Traffic Measurement. IEEE/ACM Transactions
on Networking 25, 2 (2016), 1249–1262.

[10] Cisco. 2023. Cisco IOS NetFlow. http://www.cisco.com/c/en/us/products/ios-nx-

os-software/ios-netflow/index.html.

[11] Graham Cormode and Shan Muthukrishnan. 2005. An Improved Data Stream

Summary: the Count-min Sketch and Its Applications. Journal of Algorithms 55,
1 (2005), 58–75.

[12] Xenofontas Dimitropoulos, Paul Hurley, and Andreas Kind. 2008. Probabilis-

tic Lossy Counting: An Efficient Algorithm for Finding Heavy Hitters. ACM
SIGCOMM Computer Communication Review 38, 1 (2008), 5–5.

[13] Gil Einziger, Benny Fellman, and Yaron Kassner. 2015. Independent Counter

Estimation Buckets. In 2015 IEEE Conference on Computer Communications (IN-
FOCOM). IEEE, 2560–2568.

[14] Gil Einziger and Roy Friedman. 2016. Counting with Tinytable: Every Bit Counts!.

In Proceedings of the 17th International Conference on Distributed Computing and
Networking. 1–10.

[15] Cristian Estan and George Varghese. 2002. New Directions in Traffic Mea-

surement and Accounting. In Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications. 323–336.

[16] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.

2014. Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
75–88.

[17] Julian Frommel, Cody Phillips, and Regan L Mandryk. 2021. Gathering Self-

Report Data in Games through NPC Dialogues: Effects on Data Quality, Data

Quantity, Player Experience, and Information Intimacy. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–12.

[18] Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai Liu, Tong Yang, Yi Wang,

and Bin Cui. 2020. Sliding Sketches: A Framework using Time Zones for Data

Stream Processing in Sliding Windows. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1015–1025.

[19] Xiaojie Guo, Shugen Wang, Hanqing Zhao, Shiliang Diao, Jiajia Chen, Zhuoye

Ding, Zhen He, Jianchao Lu, Yun Xiao, Bo Long, et al. 2022. Intelligent Online

Selling Point Extraction for E-Commerce Recommendation. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 36. 12360–12368.

[20] Fang Hao, Murali Kodialam, and TV Lakshman. 2004. ACCEL-RATE: a Faster

Mechanism for Memory Efficient Per-flow Traffic Estimation. In Proceedings
of the joint international conference on Measurement and modeling of computer
systems. 155–166.

[21] Chengchen Hu, Bin Liu, Hongbo Zhao, Kai Chen, Yan Chen, Chunming Wu,

and Yu Cheng. 2010. Disco: Memory Efficient and Accurate Flow Statistics for

Network Measurement. In 2010 IEEE 30th International Conference on Distributed
Computing Systems. IEEE, 665–674.

[22] Nan Hua, Bill Lin, Jun Xu, and Haiquan Zhao. 2008. Brick: A Novel Exact Active

Statistics Counter Architecture. In Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. 89–98.

[23] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and

Gong Zhang. 2017. Sketchvisor: Robust Network Measurement for Software

Packet Processing. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. 113–126.

[24] Fangyu Li, Rui Xie, Zengyan Wang, Lulu Guo, Jin Ye, Ping Ma, and WenZhan

Song. 2019. Online Distributed IoT Security Monitoring with Multidimensional

Streaming Big Data. IEEE Internet of Things Journal 7, 5 (2019), 4387–4394.
[25] Junyi Li, Xintong Wang, Yaoyang Lin, Arunesh Sinha, and Michael Wellman.

2020. Generating Realistic Stock Market Order Streams. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34. 727–734.

[26] Tao Li, Shigang Chen, and Yibei Ling. 2011. Fast and Compact Per-flow Traffic

Measurement through Randomized Counter Sharing. In 2011 Proceedings IEEE
INFOCOM. IEEE, 1799–1807.

[27] Tao Li, Shigang Chen, and Yibei Ling. 2012. Per-flow Traffic Measurement

Through Randomized Counter Sharing. IEEE/ACM Transactions on Networking
20, 5 (2012), 1622–1634.

[28] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. Flowradar: A Better

Netflow for Data Centers. In 13th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16). 311–324.

[29] Chuan Lin, Guangjie Han, Jiaxin Du, Tiantian Xu, and Yan Peng. 2020. Adaptive

Traffic Engineering based on Active Network Measurement Towards Software

Defined Internet of Vehicles. IEEE Transactions on Intelligent Transportation
Systems 22, 6 (2020), 3697–3706.

[30] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and General Sketch-

based Monitoring in Software Switches. In Proceedings of the ACM Special Interest
Group on Data Communication. 334–350.

[31] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. 2016. One Sketch to Rule Them All: Rethinking Network flow

Monitoring with Nnivmon. In Proceedings of the 2016 ACM SIGCOMM Conference.
101–114.

[32] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Abdul

Kabbani. 2008. Counter Braids: A Novel Counter Architecture for Per-flow

Measurement. ACM SIGMETRICS Performance Evaluation Review 36, 1 (2008),

121–132.

[33] Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio Silvestri. 2023.

Real-life transactional dataset. http://fimi.uantwerpen.be/data/.

[34] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. 2020. Streaming

Graph Neural Networks. In Proceedings of the 43rd international ACM SIGIR
conference on research and development in information retrieval. 719–728.

[35] Aniket Mahanti, Niklas Carlsson, Anirban Mahanti, Martin Arlitt, and Carey

Williamson. 2013. A Tale of the Tails: Power-laws in Internet Measurements.

IEEE Network 27, 1 (2013), 59–64.

[36] Dimitrios Melissourgos, Haibo Wang, Shigang Chen, Chaoyi Ma, and Shiping

Chen. 2023. Full Version of Single Update Sketch with Variable Counter Structure.

https://github.com/haiporwang/ssvs/blob/main/main.pdf.

[37] David MW Powers. 1998. Applications and Explanations of Zipf’s Law. In New
methods in language processing and computational natural language learning.

[38] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-

ishnan, and Jennifer Rexford. 2017. Heavy-hitter Detection Entirely in the Data

Plane. In Proceedings of the Symposium on SDN Research. 164–176.
[39] Rade Stanojevic. 2007. Small Active Counters. In IEEE INFOCOM 2007-26th IEEE

International Conference on Computer Communications. IEEE, 2153–2161.
[40] Andrew T Stephen and Olivier Toubia. 2009. Explaining the Power-law Degree

Distribution in a Social Commerce Network. Social Networks 31, 4 (2009), 262–
270.

[41] Toste Tanhua, Sylvie Pouliquen, Jessica Hausman, Kevin Obrien, Pip Bricher,

Taco De Bruin, Justin JH Buck, Eugene F Burger, Thierry Carval, Kenneth S Casey,

et al. 2019. Ocean FAIR Data Services. Frontiers in Marine Science 6 (2019), 440.
[42] Erez Tsidon, Iddo Hanniel, and Isaac Keslassy. 2012. Estimators Also Need Shared

Values to Grow Together. In 2012 Proceedings IEEE INFOCOM. IEEE, 1889–1897.

[43] UCSD. 2015. CAIDA UCSD Anonymized 2015 Internet Traces on Jan. 17. https:

//www.caida.org/data/passive/passive_2015_dataset.xml.

[44] Jinesh Varia, Sajee Mathew, et al. 2014. Overview of Amazon Web Services.

Amazon Web Services 105 (2014).
[45] Haibo Wang, Melissourgos Dimitrios, and Chaoyi Ma. 2022. Source code. https:

//github.com/DimitrisMel/SSVS.

[46] Haibo Wang, Chaoyi Ma, Olufemi O Odegbile, Shigang Chen, and Jih-Kwon

Peir. 2021. Randomized Error Removal for Online Spread Estimation in Data

Streaming. Proceedings of the VLDB Endowment 14, 6 (2021).
[47] Haibo Wang, Hongli Xu, Liusheng Huang, Jianxin Wang, and Xuwei Yang. 2018.

Load-balancing Routing in Software Defined Networks with Multiple Controllers.

Computer Networks 141 (2018), 82–91.
[48] Haining Wang, Danlu Zhang, and Kang G Shin. 2002. Syn-dog: Sniffing Syn

Flooding Sources. In Proceedings 22nd International Conference on Distributed
Computing Systems. IEEE, 421–428.

[49] Qingjun Xiao, Shigang Chen, You Zhou, Min Chen, Junzhou Luo, Tengli Li, and

Yibei Ling. 2017. Cardinality Estimation for Elephant Flows: A Compact Solution

based on Virtual Register Ssharing. IEEE/ACM Transactions on Networking 25, 6

(2017), 3738–3752.

[50] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast Network-

wide Measurements. In Proceedings of the 2018 Conference of the ACM Special

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://fimi.uantwerpen.be/data/
https://github.com/haiporwang/ssvs/blob/main/main.pdf
https://www.caida.org/data/passive/passive_2015_dataset.xml
https://www.caida.org/data/passive/passive_2015_dataset.xml
https://github.com/DimitrisMel/SSVS
https://github.com/DimitrisMel/SSVS

Interest Group on Data Communication. 561–575.
[51] Tong Yang, Jiaqi Xu, Xilai Liu, Peng Liu, Lun Wang, Jun Bi, and Xiaoming Li.

2019. A Generic Technique for Sketches to Adapt to Different Counting Ranges.

In IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE,
2017–2025.

[52] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. 2017. Pyra-

mid Sketch: A Sketch Framework for Frequency Estimation of Data Streams.

Proceedings of the VLDB Endowment 10, 11 (2017), 1442–1453.
[53] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng

Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: High-performance

Sketch-based Measurement over Arbitrary Partial Key Query. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference. 207–222.

[54] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, et al. 2021. LightGuardian: A

Full-Visibility, Lightweight, In-band Telemetry System Using Sketchlets.

[55] Hao Zheng, Chen Tian, Tong Yang, Huiping Lin, Chang Liu, Zhaochen Zhang,

Wanchun Dou, and Guihai Chen. 2022. FlyMon: Enabling On-the-fly Task Re-

configuration for Network Measurement. In Proceedings of the ACM SIGCOMM

2022 Conference. 486–502.
[56] Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui. 2021.

BurstSketch: Finding Bursts in Data Streams. In Proceedings of the 2021 Interna-
tional Conference on Management of Data. 2375–2383.

[57] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve

Uhlig. 2018. Cold Filter: A Meta-framework for Faster and More Accurate Stream

Processing. In Proceedings of the 2018 International Conference on Management of
Data. 741–756.

[58] You Zhou, Youlin Zhang, Chaoyi Ma, Shigang Chen, and Olufemi O Odegbile.

2019. Generalized Sketch Families for Network Traffic Measurement. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 3, 3 (2019), 1–34.

[59] You Zhou, Yian Zhou, Shigang Chen, and Youlin Zhang. 2018. Highly Compact

Virtual Active Counters for Per-flow Traffic Measurement. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 1–9.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Related Work
	2.3 Motivation

	3 Single Update Sketch with Variable Counter Structure (SSVS)
	3.1 Variable Counter Structure
	3.2 Mapping Flows to Counters
	3.3 Recording Data Items
	3.4 Size Query and SSVS-1
	3.5 Modified Size Estimation Method and SSVS-2

	4 Experimental Evaluation
	4.1 Experimental Setting
	4.2 Comparison between SSVS-1 and SSVS-2
	4.3 Accuracy Comparison between SSVS-2 and Prior Work
	4.4 Overhead Comparison between SSVS-2 and Prior Work
	4.5 Comparison between SSVS-2 and Prior Work on Web Data Set
	4.6 Comparison between SSVS-2 and Prior Work on the Zipf Data Set

	5 Conclusion
	Acknowledgments
	References

